MAWSON RESOURCES LIMITED # MANAGEMENT'S DISCUSSION AND ANALYSIS FOR THE SIX MONTHS ENDED NOVEMBER 30, 2017 # **Background** This discussion and analysis of financial position and results of operations is prepared as at January 12, 2018, and should be read in conjunction with the condensed consolidated interim financial statements and the accompanying notes for the six months ended November 30, 2017 of Mawson Resources Limited ("Mawson" or the "Company"). The following disclosure and associated financial statements are presented in accordance with International Financial Reporting Standards ("IFRS"). Except as otherwise disclosed, all dollar figures included therein and in the following management's discussion and analysis ("MD&A") are quoted in Canadian dollars. ## **Forward Looking Statements** This MD&A contains certain statements that may constitute "forward-looking statements". Forward-looking statements include but are not limited to, statements regarding future anticipated exploration programs and the timing thereof, and business and financing plans. Although the Company believes that such statements are reasonable, it can give no assurance that such expectations will prove to be correct. Forward-looking statements are typically identified by words such as: believe, expect, anticipate, intend, estimate, postulate and similar expressions, or which by their nature refer to future events. The Company cautions investors that any forward-looking statements by the Company are not guarantees of future performance, and that actual results may differ materially from those in forward looking statements as a result of various factors, including, but not limited to, capital and other costs varying significantly from estimates, changes in world metal markets, changes in equity markets, planned drill programs and results varying from expectations, delays in obtaining results, equipment failure, unexpected geological conditions, local community relations, dealings with non-governmental organizations, delays in operations due to permit grants, environmental and safety risks, the Company's ability to identify one or more economic deposits on its properties, to produce minerals from its properties successfully or profitably, to continue its projected growth, to raise the necessary capital or to be fully able to implement its business strategies, and other risks and uncertainties disclosed under the heading "Risk Factors" in the Company's most recent Annual Information Form. Historical results of operations and trends that may be inferred from this MD&A may not necessarily indicate future results from operations. In particular, the current state of the global securities markets may cause significant reductions in the price of the Company's securities and render it difficult or impossible for the Company to raise the funds necessary to continue operations. All of the Company's public disclosure filings, including its most recent management information circular, Annual Information Form, material change reports, press releases and other information, may be accessed via www.sedar.com or the Company's website at www.mawsonresources.com and readers are urged to review these materials, including the technical reports filed with respect to the Company's mineral properties. # **Company Overview and Highlights** The Company's common shares trade on the Toronto Stock Exchange ("TSX") under the symbol "MAW", on the Frankfurt Open Market under the trading symbol "MXR" and on the OTC Pink under the symbol "MWSNF.PK". Mawson is an exploration and development company with precious metal interests in the Nordic countries. Mawson's exploration focus is on the Rompas-Rajapalot gold project in Finland. Mawson is managed by resource industry professionals with significant exploration and capital market expertise. Mawson is focussed on two target areas at Rompas-Rajapalot: 1. A primary target of disseminated gold mineralization at Rajapalot, where discovery at the Palokas Prospect of high grade and thick core sample results include 19.5 m @ 7.4 g/t gold from 1.3 metres from PRAJ0006 5.4 m @ 37.6 g/t gold from 2.5 metres from PRAJ0009 (including 1.0 m @ 189.0 g/t gold from 6.9 metres); 6.8 m @ 14.7 g/t gold from 34.4 metres and 10.0 m @ 11.06 g/t gold from 110.2 metres. This disseminated mineralization is coincident with geophysical anomalies that extend for more than 4 kilometres. Follow up drilling along the strike extent produced results including 27.0 m @ 3.3 g/t gold (no cut) from 64.0 metres including 3.0 m @ 2.9 g/t gold from 64 metres, 2.0 m @ 5.6 g/t gold from 70.0 metres and 8.8 m @ 7.5 g/t gold from 82.2 metres in PAL0075 and 13.5 m @ 4.0 g/t gold from 180 metres in PAL0062. 2. The Company's secondary target is the Rompas vein-style target area. The first drill program at South Rompas included the highlight of 6 m at 617 g/t gold from 7 metres in drill hole ROM0011 which includes 1 metre at 3,540 g/t gold from 11 metres depth. The second drill program, conducted over the winter (December 2012 - January 2013) confirmed the presence and variable continuity within metabasalts of high grade, nuggety gold at both North and South Rompas and included results from North Rompas of 0.4 m at 395 g/t gold and 0.41% uranium in drill hole ROM0052 and at South Rompas the top 24% all assays from trenches and drilling now grade 100 g/t or more. Disseminated gold mineralization has recently been discovered as a 750 metre-long system some 500 metres east of the Rompas vein-hosted system. One hundred and ten samples have been collected, analyzed and reported to date, from which gold grades range from <0.05 g/t gold to 2,375 g/t gold. Of the 30 samples ranging between 0.1 g/t and 2,375 g/t gold, the average grade is 201.1 g/t gold and the median 0.82 g/t gold (data can be viewed on the Company website at www.mawsonresources.com). Samples are outcrop grab samples, which are selective by nature and are unlikely to represent average grades on the property. These samples were taken from the Männistö exploration permit area, granted in full on May 2, 2017. The host package to this mineralization in the Männistö permit is inferred to be the same as that hosting the disseminated Rajapalot gold prospects. The Company currently has one material property for the purposes of NI 43-101, the Rompas-Rajapalot gold project in Finland. # Progress Report on the Geology, Mineralization and Exploration Activities on the Rompas-Rajapalot gold project, Peräpohja Schist Belt, Lapland, Finland A report entitled "Progress Report on the Geology, Mineralization and Exploration Activities on the Rompas-Rajapalot gold project, Peräpohja Schist Belt, Lapland, Finland" and dated August 28, 2017 (the "Technical Report") was prepared for the Company by Dr. Nicholas Cook and Mr. Michael Hudson, non-independent Qualified Persons (as defined under NI 43-101). Dr. Cook is the President of Mawson and a Fellow of the Australasian Institute of Mining and Metallurgy. Mr. Hudson is the CEO and Chairman and a director of Mawson and a Fellow of the Australasian Institute of Mining and Metallurgy. The Technical Report is available under the Company's profile on SEDAR at www.sedar.com and on the Company's website at www.mawsonresources.com. Readers are encouraged to read the entire Technical Report. In addition, the technical information provided under Exploration Projects was prepared by Mawson and reviewed by Michael Hudson as the Qualified Person. Mr. Hudson is a director, Chairman and Chief Executive Officer for Mawson, and a Fellow of the Australasian Institute of Mining and Metallurgy. # **Exploration Projects** ## **Finland** As at January 4, 2018, the Company held a total of 4 granted exploration permits and 11 exploration permit applications. One of the permits listed under application (Kairamaat 2/3) has been granted since October 2014 and came up for its triannual renewal in October 2017. According to the Finnish Mining Act, an application to extend any exploration permits can be made in three year intervals, up to a maximum of 15 years. Renewal for Kairamaat 2/3 is expected to take place during January 2018. Status of Mawson's Claims in Finland | | Number | Area
(ha) | |--|--------|--------------| | Granted Exploration Permits | 4 | 4,227 | | Exploration Permit Applications | 11 | 17,053 | ## Rompas-Rajapalot Gold Project The Rompas-Rajapalot project is a new discovery in Northern Finland where high-grade gold has been found within an area approaching 10 km by 10 km. The nature of the terrain and all-weather access allows year-round exploration work across more than 70% of the area. Winter access is possible in the remaining area when ice and snow conditions permit - usually after mid-December each winter. # Rajapalot Disseminated Gold Project Rajapalot is located 8 kilometres to the east of the Rompas vein trend. The style of mineralization at Rajapalot is predominately sulphidic and of a disseminated or replacement style, which differs from the nuggety vein style observed at Rompas. Rajapalot is the primary target area for the Company. Surface sample highlights from Rajapalot include prospecting grab samples taken from outcrop that returned 2,817 g/t gold, 2,196 g/t gold, 1,245 g/t gold, 933 g/t gold, 151 g/t gold and 135.5 g/t gold. A total of 52 grab samples from the Rajapalot prospect to date average 152.8 g/t gold and range from 0.001 g/t to 2,817 g/t gold. All samples are prospecting grab samples. These are selective by nature and are unlikely to represent average grades on the property. Discovery grab samples from the Rajapalot project returned gold mineralization from three distinct areas, namely the Palokas, Joki and Rumajärvi prospects. The
areas were targeted with regional geophysics and surface soil geochemistry. Rumajärvi lies 1.5 kilometres south of Palokas, while Joki is located 1 kilometre southeast of Palokas. Each prospect area is characterized by minor outcrop on a topographic high, within a predominantly swampy terrain and therefore very little in situ bedrock has been located. Little outcrop has been found between the prospect areas. As the same mineralized rock types occur in outcrop, the glacial boulders sampled and reported here are considered to be proximal to their source. # Rajapalot Boulder Fields A systematic review of the nine gold-bearing boulder fields at Rajapalot was conducted in summer 2017, from which 160 gold mineralized boulders were identified within a 12 square kilometre area. The potential bedrock source of only three of the nine boulder fields have been located by drilling, with the remaining six boulder trains now planned for follow up exploration in the forthcoming winter drill program (January 2018 to April, 2018). A total of 160 boulders and outcrops with >0.1 g/t gold have been discovered within a 4 kilometre by 3 kilometre area at Rajapalot. Gold grades range from 0.1 g/t gold to 3,870 g/t gold, with an average of 74.9 g/t gold and median of 0.71 g/t gold. Samples from boulders are grab samples, which are selective by nature and are unlikely to represent average grades on the property. A summary of sample statistics is shown in the table below. Samples from boulders are grab samples, which are selective by nature and are unlikely to represent average grades on the property. A lower cut-off for reporting of the boulders is 0.1 g/t Au, and the range, mean and median are all reported to give a more accurate representation of sample variation. Compilation and re-examination of all the boulder information was conducted for comparison of the drill results of the 2016-17 winter drilling and base of till ("BOT") results with previously held data. The geochemistry, mineral assemblages and the shape and size of all boulders was reviewed. Company geologists have determined that the grade distribution of boulders and their spatial association with outcrops and drill results indicate that the shallowly buried sources are close to the northwestern edges of the defined boulder fields. The source of three boulder fields identified have been located. The source of the largest boulder field, Rumajärvi, remains elusive, but as the boulders contain highly anomalous and disseminated gold with pyrrhotite, this remains a high-priority target for 2017/2018 winter drill program. Geophysical studies, including distinguishing magnetic pyrrhotite-bearing metasediments from magnetic volcanic rocks is allowing more effective targeting of boulder sources. | Prospect | Number | Average
Au g/t | Median
Au g/t | Min
Au g/t | Max
Au g/t | > 5 g/t
Au | 2-5 g/t
Au | 0.5-2 g/t
Au | 0.1-0.5 g/t
Au | |----------------|--------|-------------------|------------------|---------------|---------------|---------------|---------------|-----------------|-------------------| | Hirvimaa | 23 | 15 | 0.6 | 0.1 | 253 | 5 | 0 | 8 | 10 | | Palokas | 6 | 1.0 | 0.8 | 0.2 | 2.8 | 0 | 1 | 2 | 3 | | South Palokas | 4 | 4.5 | 0.7 | 0.1 | 17 | 1 | 0 | 1 | 2 | | Boardwalk | 19 | 28.1 | 1.0 | 0.2 | 221 | 4 | 2 | 8 | 5 | | Terry's Hammer | 22 | 1.6 | 0.3 | 0.1 | 14 | 3 | 0 | 2 | 17 | | Rumajärvi | 55 | 184 | 0.6 | 0.1 | 3870 | 14 | 6 | 9 | 26 | | Raja Prospect | 5 | 11 | 2.4 | 0.7 | 43 | 2 | 1 | 2 | 0 | | Joki | 7 | 50 | 6.3 | 0.1 | 151 | 5 | 0 | 1 | 1 | | Raja Permit | 19 | 27 | 1.0 | 0.1 | 236 | 5 | 1 | 7 | 6 | ## Rajapalot Drilling In October 2013, Mawson announced the first core test of Rajapalot from the Palokas prospect. Drilling intersected 9 metres at 10.2 g/t gold from surface, including 3 metres at 27.5 g/t gold in hole PRAJ0003. Palokas is part of the Rajapalot area, located 7 kilometres east of our drilling in the vein style mineralization at Rompas. Further high grade, thick and near-surface core sample results in November 2013 and January 2014 included: - 19.5m @ 7.4 g/t gold from 1.3 metres from PRAJ0006; - 5.4m @ 37.6 g/t gold from 2.5 metres from PRAJ0009 (including 1.0m @ 189.0 g/t gold from 6.9 metres); - 12.6m @ 3.6 g/t gold from 6.7 metres in PRAJ0005; - 19.0m @ 2.3 g/t gold from 8.0 metres from PRAJ0022; and - 8.7m @ 4.6 g/t gold from 16.9 metres from PRAJ0025. Multi-element analyses from all core sample holes from the Palokas Prospect at Rajapalot (holes PRAJ0003 to PRAJ0025) shows consistently low uranium (weighted average through quoted intersections is 36ppm uranium and 5.2g/t gold) and high cobalt grades associated with gold mineralization. Cobalt also forms a broader halos around lower (>0.1 g/t) grade gold mineralized zones. The low uranium grades drilled at Palokas also support the concept of both gold-rich and uranium-rich styles occurring within the Rompas-Rajapalot mineral field. In September 2014, the Company was permitted to drill across the entire Palokas trend at Rajapalot in Finland with a hand portable core sampler capable of drilling depths up to 35-40 metres below surface. The program consisted of 33 holes for 1160.5 metres with an average hole depth of only 35.1 metres. Four additional holes did not drill through to basement. The results extended drilled gold mineralization over 1.2 kilometres from Palokas. Across strike width of mineralization increased up to 120 metres, suggesting possible multiple horizons across strike (previous drilled thickness was 20 metres true width at Palokas). All discoveries are blind, and covered by 2-5 metre thick glacial till deposits, and are open along strike and at depth. Highlighted intersections reported between December 2014 and March 2015 included: - 2.0m @ 9.1 g/t gold from 25.4 metres from PRAJ0070 - 3.0m @ 5.1 g/t gold from 8.7 metres from PRAJ0073 - 1.0m @ 14.7 g/t gold from 16.3 metres from PRAJ0072 - 3.9m @ 3.2 g/t gold from 23.0 metres in hole PRAJ0076 - 3.4m @ 2.0 g/t gold from 14.0 metres in hole PRAJ0080 - 3.0m @ 1.4 g/t gold from 35.9 metres in hole PRAJ0080 - 0.3m @ 49.6 g/t Au from 17.7 metres in hole PRAJ0097 The bulk weighted average of geochemical data show consistently low grade uranium within all intervals greater than 0.5 g/t gold with averages of 2.9 g/t gold and 26 ppm uranium for drill holes PRAJ0070-PRAJ0096. The true thickness of the mineralized interval is interpreted to be approximately 80% of the sampled thickness. Drilling was performed with a Company-owned and operated, hand portable, low impact rig, below 2-5 metres of glacial till overburden in the vicinity of gold bearing glacial boulders and subcrop. In March 2015 the results from a pseudo-3D pole-dipole induced polarization ("IP") and resistivity survey at Palokas defined a 600 metre long conductive anomaly extending down plunge from drilled near-surface gold mineralization (ie 19.5 metres @ 7.4 g/t gold from 1.3 metres depth. The thickness of the conductive body increases with depth and is open below the 250 metre investigative depth of the survey. The IP area surveyed commenced more than 250 metres north of Palokas to 500 metres south of the Palokas prospect. Gold at Palokas is associated with pyrrhotite which forms the conductive and chargeable anomaly associated with drilled gold mineralization and has been confirmed by petrophysics. The thickness of the conductive body increases with depth and is open below the 250 metre investigative depth of the survey. The body plunges south and has little or no surface expression where recent near-surface drilling has provided near-miss and thinner mineralized gold hits. In March 2015 the Company took delivery of a new "Winkie" low impact portable diamond core sampler. This allowed testing to 120 metres down hole. Two drill holes for 180.2 metres were completed in April 2015 before winter access conditions ended, to test the down-dip extensions of the Palokas prospect tested beneath near surface. Highlight intersections included: - 19.6m @ 7.5 g/t gold from 18.1 metres in drill hole PRAJ0107 including 5.0m @ 24.1 g/t gold from 26.7 metres with visible gold present; and - 5.1m @ 3.8 g/t gold from 18.3 metres in drill hole PRAJ0108. Drilling at Palokas recommenced in August 2015 after the snow melted and the bird nesting exclusion period was over. Drill results coincide with a series of near surface geophysical anomalies and form part of a 3 kilometre target horizon within a broader district of gold mineralization discovered within a 100 km² area between the Rompas and Rajapalot project areas. Highlight intersections from this program included: - 19.0 metres @ 5.3 g/t gold from 38.7 metres in drill hole PRAJ0109 - 9.2 metres @ 3.2 g/t gold from 82.0 metres in drill hole PRAJ0110 - 5.8 metres @ 6.2 g/t gold interested from 39.1 metres in drill hole PRAJ0111, including 1 metre @ 19.8 g/t gold from 42.1 metres - 20.6 metres @ 2.7 g/t gold from 56.8 metres in drill hole PRAJ0113 - 7.0 metres @ 7.2 g/t gold from 61.1 metres in drill hole PRAJ0114 In February 2016 drill results from the first four holes from the Palokas prospect and one hole from Hirvimaa became available. All holes at Palokas intersected the mineralized sequence with only lower tenor gold mineralization discovered down dip and along strike from previous drilling, where marginal-style talc alteration predominates. Results from Palokas include 4 metres @ 1.2 g/t gold from 152.0 metres in PAL0009, drilled 65 metres down dip from PRAJ0110 (9.2 metres @ 3.2 g/t gold from 82 meters) and 3.1 metres at 1.4g/t gold from 150.6 metres in PAL0012, drilled 90 metres down dip from PRAJ0117 (2.0 metres @ 2.8 g/t gold from 66.4 meters, 3.0 metres @ 1.6g/t gold from 65.6 metres and 3.0 metres @ 1.9g/t gold from 109.9 metres). Results from the first deep drill hole drilled at Hirvimaa, PAL0008, located 680 metres north of Palokas, include 3.0m @ 1.4g/t gold from 31 metres. Mineralization remains open
down plunge to the north and appears to be truncated down-dip and to the south by these new results. In March 2016, 8.4 metres @ 4.2 g/t gold from 206.0 metres in PAL0016, including 3.4 metres @ 9.5 g/t gold from 211 metres was reported. The true width is interpreted to be approximately 90% of the sampled thickness. PAL0016 was drilled 350 metres along strike from the main Palokas mineralization and is the deepest and best result drilled outside of Palokas to date. Mineralization is hosted in a sericite-quartz-pyrrhotite rock which represents a different style and stratigraphic position to Palokas. In April 2016, the extension of the Palokas mineralization to north was reported with PAL0019 intersecting the down plunge extension of mineralization, which included 2.9 metres @ 5.9 g/t gold from 176.7 metres, including 1.0 metre @ 16.7 g/t gold from 178.7 metres. Mineralization is hosted within a 40 metre thick chlorite-tourmaline-amphibole-pyrrhotite rock, and is the deepest discovery at Palokas to date. Also reported was PAL0018 (1.0 metre @ 17.9 g/t gold from 172.0 metres) where mineralization is hosted in altered sericitic calculate-bearing albitites interpreted to be 50 metres lower in the stratigraphy than the Palokas mineralization. Mineralized rocks were drilled over 3.5 kilometres strike during the winter 2016 program. Drill hole PAL0023 (3.0 metres @ 2.1 g/t gold from 84.4 metres) is significant as it is located 2 kilometres from Palokas, and is the most easterly hole drilled along the Palokas target horizon. The main Palokas mineralized position was found within a 100-metre thick hydrothermally altered talc-silicified-pyrrhotite-amphibole rock. The host sequence here is inverted, increasing both complexity and volume of potential host rock within the target area. In October 2016, a 225 BOT drill hole program was completed at the Raja prospect, located one kilometre east of Palokas. Drilling took place on a 150 metre grid, with infill drilling at closer spacing based on onsite hand-held XRF analysis and geological logging. Eight anomalous gold target areas were defined with six of these target areas followed up with 206 drill holes at 25m centres along anomalous drill traverses defined from the first program. In November 2016, Mawson completed the first phase of a geophysical program to infill and extended data coverage ("Phase 1") and due to encouraging BOT drill results, the Company extended the geophysical survey area ("Phase 2"). #### Phase 1 consisted of: - 22 line kilometres of gradient array IP geophysics along the Palokas trend, including coverage of the Joki prospect. Areas surveyed have thin glacial till cover, and are associated with undrilled anomalous surface geochemistry. The survey tested for chargeable and low resistive zones that are known to be associated with gold mineralization; - 84 line kilometres of extension and infill ground magnetics were completed at 50 metre line spacing, undertaken to constrain various structurally controlled gold targets, that may concentrate gold mineralization; ## Phase 2 consisted of: • 63 line kilometres of ground magnetic surveying to extend coverage of the Raja area, where eight areas of gold anomalism were discovered by BOT drilling. In December 2016, the Company announced the first systematic, large scale and deep test of the area with a large diamond drill and BOT drill. In July 2017 the Company presented a final summary of its successful winter drilling program. The winter drill program confirmed the presence of a large, gold-mineralized hydrothermal system at Rompas-Rajapalot, and delivered one of Finland's most significant gold discoveries. The high hit rate of gold over regional-scale areas, the discovery of multiple high grade mineralized bodies and an extensive gold-footprint provided by BOT drilling, all in the first year of systematic, yet regional scale drill testing is considered impressive by the Company. # Key points from the program include: - (i) The winter exploration program represents the first large scale drilling on the project with the following work completed; - 55 diamond drill holes for 11,056 metres of diamond drill core, averaging 210 metres; - 1,801 BOT holes, for 7,983 metres, averaging 4.4 metres, and - 105 km of infill and extension ground magnetics collected on lines spaced at 50 metres. - (ii) Drilling confirmed the presence of a large gold-mineralized hydrothermal system within a 4.5 sq km area while testing only a small fraction (5%) of the 27-kilometre strike of the interpreted host sequence in the Rajapalot area; - (iii) Exceptional rate of drill success with 42% of holes (58 out of the total 137 holes drilled in the Rajapalot project) hitting geochemically significant gold (greater than 1g/t-m). Furthermore, 28% of drill holes (39 out of a total of 137) have recorded greater than 5 g/t-m intersections. The total average drill depth on the project remains shallow at 109 metres. ## (iv) Best results include: - PAL0030: 10.0 metres @ 11.6 g/t gold from 110.2 metres; plus 2.9 metres @ 1.0 g/t gold from 135.7 metres; and 3.0 metres @ 5.3 g/t gold from 143.9 metres at the Palokas prospect; - PAL0027: 6.8 metres @ 14.7 g/t gold from 34.4 metres at the Palokas prospect intersected, and; - PAL0075: 27.0 metres @ 3.3 g/t gold (no lower cut) from 64.0 metres, including 3.0 metres @ 2.9 g/t gold from 64 metres, 2.0 metres @ 5.6 g/t gold from 70.0 metres and 8.8 metres @ 7.5 g/t gold from 82.2 metres at the Raja prospect, 1.75km from Palokas. The true thickness of mineralized intervals at Palokas is interpreted to be approximately 90% of the sampled thickness. The true thickness of the mineralized intervals at Raja and South Rajapalot, will require additional drilling to determine due to the complicated structural controls. Key results are shown in the following table. Of note, outside the Kairamaat 2-3 permit and 2 kilometres east of Palokas, drill hole PAL0050 intersected 1 metre @ 323 g/t silver from 24.7 metres. Silver has not been identified in the system earlier and its context is under review. Select intersections from the 2017 Winter Drill Program 0.5g/t Au over 1m lower cut, no upper cut-off | Hole ID | Depth From (m) | Depth To (m) | Width (m) | Au
g/t | |---------|----------------|--------------|-----------|---------------| | PAL0027 | 27.46 | 31.01 | 3.6 | 2.5 | | and | 34.41 | 41.21 | 6.8 | 14.7 | | and | 44.20 | 47.20 | 3.0 | 3.2 | | PAL0028 | 37.60 | 39.25 | 1.7 | 3.9 | | PAL0030 | 110.20 | 120.20 | 10.0 | 11.6 | | and | 143.85 | 146.85 | 3.0 | 5.3 | | PAL0033 | 152.5 | 154.7 | 2.2 | 7.7 | | PAL0040 | 37.3 | 42.3 | 5.0 | 1.2 | | PAL0043 | 10.6 | 22.6 | 12.0 | 1.2 | | PAL0048 | 53.0 | 95.7 | 42.7 | 1.0 | | PAL0050 | 24.7 | 25.7 | 1.0 | 323g/t silver | | PAL0062 | 180.0 | 193.5 | 13.5 | 4.0 | | PAL0075 | 30.6 | 34.5 | 3.9 | 1.3 | | and | 64.0 | 91.0 | 27.0 | 3.3 | A broad area of 4 by 6 kilometres was drill tested by the 1,801 BOT drill hole program. The program was successful in defining known mineralization and also defined multiple new drill targets over an extensive area. The Rajapalot gold mineralizing system now covers more than 4.5 sq km based on diamond drill results, and is most likely to extend much further based on anomalous gold values in the BOT data. Drilling has now confirmed the presence of a large, gold-bearing, sulphide-bearing hydrothermal system associated with granitoid intrusions dated at 1.78 billion years, making the project similar in age to the Agnico Eagle's 7.8 Moz Kittila project that lies 150 km north of Rompas-Rajapalot. Gold mineralization is controlled by a combination of granitoids and structurally-controlled fluid flow systems interacting with stratabound iron-rich rocks (Palokas-type). A new style of mineralization has also been discovered in the Rumajarvi area in where sulfides and gold occur in brecciated and fractured schists. Given the wide variety of controls on gold, the drill success rate remains exceptional. The source of gold mineralization uncovered in boulders at the "Boardwalk" prospect has not been yet discovered by drilling. However, zones up to 20 metres thick zones of anomalous gold in iron formations has been intersected and are reported here for the first time (best intersection of 1 metre @ 3.19 g/t gold from 32 metres in PAL0074). These rocks further validate the "Homestake" geological model. During October 2014 the Company announced results from preliminary metallurgical testing on drill core from the Palokas prospect at the Rompas-Rajapalot gold project in Arctic Finland by SGS Mineral Services UK in Cornwall. Excellent gold extraction results of between 95% and 99% (average 97%) were obtained by a combination of gravity separation and conventional cyanidation. Gravity extraction for the four composites responded well with 26-48% gold extraction. Leaching was performed on the pulverised and blended tailings from the three size fractions after gravity extraction. Samples tested are not classified as refractory. Metallurgical test work indicates gold recovery and processing are potentially amenable to conventional industry standards with a viable flowsheet which could include crushing and grinding, gravity recovery, and cyanide leaching with gold recovery via a carbon-in-pulp circuit for production of onsite gold doré. # Rompas Vein Gold Project The initial discovery area, Rompas, is a hydrothermal vein style system defined over a 6.0 kilometres strike and 200-250 metres width. Exploration on the project started in May 2010. During that year, 80 channel samples averaged 0.59 metres at 203.66 g/t gold and 0.86% uranium and during 2011 the weighted average of all 74 channel intervals was 1.40 m at 51.9 g/t gold and 0.13 % uranium. Unrepresentative grab sample results include values up to 33,200 ppm gold and 56.6% uranium oxide at Rompas. From mid-2011 Mawson has drilled 8,164.8 metres in 90 holes at Rompas, comprising 2,462.8 metres in 29 drill holes at
North Rompas; 2,436.2 metres in 29 drill holes in the northern block at South Rompas; 2,504.3 metres in 24 holes within the southern block at South Rompas; and 761.5 metres in 8 drill holes at Northern Rajapalot. In August 2012, results from the first drill program at Rompas returned 6 metres @ 617 g/t gold in drill hole ROM0011 including 1 metre @ 3,540 g/t gold and 1 metre @ 114.5 g/t gold in drill hole ROM0015. These results confirmed the significance of the hundreds of high-grade surface occurrences that were channel sampled during 2010 and 2011. A second drill program commenced in December 2012. At North Rompas the best results include 0.4 metres @ 395 g/t gold and 0.41% uranium from 41.0 metres in drill hole ROM0052, the most southerly drill hole of the program; and 1.1 metres @ 9.8 g/t gold and 0.16% uranium from 78.5 metres in drill hole ROM0053. Drilling at the Kaita prospect at the most southern end of the Rompas vein system did not intersect mineralization of economic interest. A 13 diamond drill hole program for 784.2 metres campaign was conducted during September-October of 2013. The best diamond drill result was 1m @ 4.9 g/t gold from 49 metres in KD0009. Better surface diamond cut trench results from Kaita included 1.65 metres @ 29.1 g/t gold in TR107465; 1.2 m @ 27 g/t gold in TR118401, 0.4 m @ 132 g/t gold in TR118407 and 1.5 m @ 42.2 g/t gold in TR118425. With only 450 metres of the plus 6 kilometre vein system sporadically tested to date down to less than 80 metres vertical depth, the most encouragement has come from the northern block of South Rompas vein system, with both prospect scale shallow drilling and trenching defining a coherent mineralized sequence. South Rompas is characterized by gold mineralization constrained to one specific host rock type (metabasalt) within a broader uranium halo. Within this halo the: - top 24% of all trench and drill assays above the lower cut of 0.5 g/t gold or 100 ppm uranium, have a grade of 100 g/t or more and the top 24% of all intersections have a grade of 0.42% uranium or higher; - top 25% of drill intersections only have a grade of 7.7 g/t or higher; - highest grade drill hole intersection is 3,540 g/t gold over 1 metre. The highest grade uranium intersection is 3.6% uranium over 0.6 m in a trench. The highest grade drill intersection grade of 0.7% uranium over 1.0 metres: - mineralization in the vein system, to date, is characterized by narrow intersection widths of 1-2 metres with an average of 0.9 metre thickness; - drilling, to date, has been shallow with 46% of intersections at 20 metres down hole depth or less; and - 11 out of 13 holes drilled in 2013 winter drill program at South Rompas had at least one intersection that exceeded lower cut 0.5 g/t gold or 100 ppm uranium. The host sequence to the Company's second target area, the Rompas vein-style mineralization, comprises a package of amphibolite facies metamorphosed basalts, clastic sediments, carbonate rocks and reduced shales of the Paleoproterozoic Peräpohja Schist Belt in southern Lapland. Mineralized intersections to date are largely within metabasaltic rocks. Detailed field mapping and logging of drill core indicate the gold and uraninite at Rompas is hosted by carbonate-quartz-calcsilicate veins and their related alteration selvages. The calcsilicate veins comprise carbonate, quartz, amphibole and pyroxene with highly variable amounts and distribution of uraninite and gold. Alteration of the host rock marginal to the veins comprises biotite, amphibole and some K-feldspar. The gold and uraninite are typically found intimately associated at North and South Rompas, although rare elevated uranium intersections contain little or no gold. The carbonate veins within the host clastic sequence appear identical to those within the metabasalts, indicating perhaps a structural or wall rock control on the precipitation of the gold and uraninite. Further work to identify the controls on mineralization is being conducted in association with the Geological Survey of Finland ("GTK"). In summary, the Rompas Au-U mineralized system comprises dolomite-calcsilicate-quartz veins within amphibolite facies mafic volcanics (and possibly sills). - Mineralization occurs on a six kilometre long, north-trending ridgeline that geophysically extends up to combined 10 kilometre strike under glacial cover to the north and south. - Folded and attenuated veins are found both within the mafic volcanics and the enclosing calculated calculates, but mineralization is almost exclusively confined the mafic rocks. - Uraninite grains, variable in size, but some exceeding 2 cm, occur within the dol-cs-qtz veins these have been dated at 1.95 Ga (the metamorphic age of the host rocks). It is therefore interpreted that their emplacement age is much older, but likely less than 2.3 Ga (approximate age of the Great Oxidation Event). - Gold in the Rompas mineralized trend mostly occurs intimately with uraninite, filling fractures in association with sulphides, tellurides and gold alloys. A further association is the gold that surrounds pyrobitumen grains that in turn surround uraninite. - Apparently very late localized gold is visible on cleavage surfaces in dolomite. - Stage 1 of the gold mineralization is dated at 1.78 Ga based on ages of the coexisting mineral assemblages; there are no constraints on the age of gold that is paragenetically later (younger) than stage 1. After consultation with the mining and environmental authorities a decision was also made to leave handling of the Kairamaat 1 area, which includes the Rompas vein-style prospects, to a later date to allow for additional background data to be collected and further discussions with stakeholders. This process has now started and an application for the renewal of Kairamaat 1 is expected to be ready for submission in Q2 2018. Therefore, at this stage, the Company is focussing its efforts on the Rajapalot project area which it discovered in September 2012. The understanding of the regional controls on disseminated gold mineralization combined with a fresh examination of the host rocks to Rompas vein-hosted gold system has allowed targeting of a new area east of the Rompas trend in summer, 2017. This area lies within the newly granted Männistö exploration permit. Fieldwork continues in the area, with mini-drill sampling, rock chip sampling and geological mapping ongoing. Geophysical surveys completed included electromagnetic geophysics (VLF-R) and ground magnetics. These have been instrumental in increasing the understanding of the sub-till basement geology. Diamond drilling commenced in December 2017. # East Rompas Discovery (Männistö Permit Area) A test reverse circulation ("RC") program was completed in the Männistö permit area in the immediate vicinity of the newly discovered gold mineralization during September 2017. Seventeen shallow holes (less than 20 metres) were drilled through thin glacial soil to bedrock along three lines to test the Rajapalot-style gold target position. 135 samples were taken both within the glacial cover and in bedrock. Interpretation of the minor gold anomalism and multielement geochemistry combined with geological mapping and grab samples has enabled the commencement of a 2000 metre (maximum) diamond drill program which started in December 2017. The Company plans to complete systematic BOT drilling (approximately 800 holes) across the entire Männistö permit area during January to March 2018. Disseminated gold mineralization has recently been discovered as a 750 metre-long system some 500 metres east of the Rompas vein-hosted system. The discovery zone is located approximately 500 metres east of the 6 kilometre long Rompas high-grade veins system (6 metres @ 617 g/t Au in drill hole ROM0011) in Mawson's 100% owned Rompas-Rajapalot project in Northern Finland. One hundred and ten samples have been collected, analyzed and reported to date, from which gold grades range from <0.05 g/t gold to 2,375 g/t gold. Of the 30 samples ranging between 0.1 g/t and 2,375 g/t gold, the average grade is 201.1 g/t gold and the median 0.82 g/t gold (data can be viewed on the Company website at www.mawsonresources.com). Samples are outcrop grab samples, which are selective by nature and are unlikely to represent average grades on the property. These samples were taken from the Männistö exploration permit area, granted in full on May 2, 2017. The host package to this mineralization in the Männistö permit is inferred to be the same as that hosting the disseminated Rajapalot gold prospects. The area was prioritized through recent re-interpretation of the regional stratigraphy, including the understanding that disseminated gold occurrences of the Rajapalot-style lie stratigraphically adjacent to the high grade Rompas-style gold vein mineralization. The area is fully permitted for diamond drilling and is located outside Natura 2000 areas, within the recently permitted Männistö exploration permit area. Gold mineralization in these newly discovered outcrops is hydrothermal, fracture controlled and associated with strongly biotite-altered mafic rocks, believed similar to the Joki discovery at Rajapalot. Most of the fracture-controlled gold mineralization discovered to date occurs in strongly hydrothermally biotite-altered mafic rocks within a 750 metres long zone. The width of the occurrence is uncertain, but is at least 20 metres. Outcrop is poor and forms less than 5% of the area. In the northern part of the discovery area, alteration is concentrated close to the eastern contact towards metasediment/mafic contact. The biotite alteration appears to be a younger event than the amphibolite-facies foliations developed in most of the adjacent rocks. The mafic rocks are variably magnetic and are hosted within calcsilicate and quartz-rich rocks. Geologic mapping and sampling of the East Rompas prospect continues, accompanied by
additional ground magnetics at 25 metre spacing and VLF-R at 50 metre spacing. Diamond drilling at East Rompas commenced in December 2017. # Rompas-Rajapalot Regional Exploration Project Over a larger area, the extensive data collected from Rompas during the last four field seasons has provided an excellent understanding of the exploration potential. Mawson has collected a total of 2,808 surficial soil and till samples over an area exceeding 55 km by 30 km. Sample spacing has ranged from 1 km to 250 metres. Known gold mineralization correlates well with surficial soil anomalies and many untested surface targets remain over a larger area. Surface prospecting, using radiometric methods as a pathfinder for gold, have defined high-grade gold mineralization over a $100 \, \mathrm{km}^2$ area, where less than 5% of rock outcrops. Mawson's geochemical rock chip, grab and channel sample database over this large area now contains 1,171 samples which average 212 g/t gold and 0.8% uranium. Of the 1,171 samples, 84 samples assay more than $100 \, \mathrm{g/t}$ gold. Gold values range from 33,320 g/t gold to <0.001 g/t gold and uranium values from 49.5% to <4 ppm. Channel samples are considered representative of the in situ mineralization sampled, while grab samples are selective by nature and are unlikely to represent average grades on the property. Importantly, about 90% of the Rompas-Rajapalot project area is below soil and till cover which, at up to five metres thick, is too thick for the discovery of near-surface radiometric occurrences and exploration is at its very earliest of stages. The Rompas and Rajapalot mineralization are considered to be the same system, manifested in different ways. The main relationships between the two areas, understood to date, are: - the gold at the Rompas and Rajapalot projects is predominately 1.78 Ga in age; - although the main gold mineralizing events at both locations appear very different, a similar driving force is inferred. That is, the hydrothermal systems are driven by shallowly-emplaced regional granitoids; - the precipitation mechanisms for gold however, varies across the project areas from uraninite-related processes (complex interplay of reactions involving bisulphide complexes through oxidation by radioactivity and release of radiogenic lead from uraninite) to reaction of hydrothermal fluids with existing iron-rich silicate and oxide rocks (e.g. Palokas). Processes involving more "standard" wall-rock redox and acidic fluids to produce white mica and sulphide should also be considered, along with classic skarns; - the possibility of gold carried by "early, high-T" gold chloro complexes should not be discounted as a mechanism for the biotite-magnetite gold occurrences; - a strong gravity gradient across North Rompas is interpreted to represent the edge of a shallow granite. The occurrence of gold along the Rompas trend appears to become higher temperature and more widely distributed with silicates towards the north (requires further work); and - the Palokas iron formation is interpreted as lying approximately 500 metres vertically above the Rompas mafic rocks. Stratigraphically above this position are a series of aluminous clastic metasediments, quartzites, graphitic and bituminous schists and magnesian mafic rocks. During the period July to October 2017 Dr. Laurent Ailleres of PGN Geoscience, an expert in the building of 3D structural-geophysical models, and Dr. Nick Oliver of Holcombe Coughlin Oliver Valenta Global, a renowned Proterozoic structural and hydrothermal specialist were involved with Mawson in the creation of a new structural-lithochemical model for exploration in the Rajapalot area. The integrated diamond drilling, BOT, surface sampling and geophysical data has helped to produce an updated interpretation of the Rajapalot gold mineralization. Multiple new targets, in addition to validation of Mawson's existing targeting approach, have resulted in the planning of a 15,000 metre diamond drill program to commence in January 2018. # Rompas-Rajapalot Global Analogues As a result of the first deep diamond drilling program over the 2016-17 winter, Mawson was been able to define the Rompas-Rajapalot mineralization as typical of a Paleoproterozoic Gold system. This well-documented deposit style appears to be late tectonic, has a stratabound geochemical control on gold precipitation and commonly has a regional granitoid association in the age range 1.75 - 1.85 Ga. A global metal contribution of more than 200 million ounces makes for a significant target type. The best analogues to the Rajapalot mineralization are the Homestake Mine in South Dakota; Tanami mines in Northern Territory, Australia and Salobo (Brazil). The similarities of Rompas-Rajapalot to the Paleoproterozoic Lode Gold±Ironstone-Copper deposit style include: - similar age host rocks and mineralization age; - a similar tectonostratigraphic setting with a Paleoproterozoic sequence with large layered mafic sequence at the base, mature clastic and carbonate platform sediments, including rocks deposited during the Great Oxidation Event (GOE) transitional into deeper water, reduced facies including carbonaceous rocks; - post-peak metamorphic emplacement of large intrusives driving hydrothermal fluids causing metal deposition in a brittle and brittle-ductile regime; - a strong stratigraphic-structural control including stratabound and fold hinge related mineralization; - large retrograde hydrothermal fluid systems carrying significant gold; and - similar iron and magnesium-rich alteration rock types forming a close association with gold mineralization. The Rompas-Rajapalot project continues to evolve with significant advances in the understanding of similar structural-stratigraphic and fluid-rock controls on apparently contrasting mineralization styles. The adoption of a "mineral systems" approach combined with the results of the recent winter diamond drilling allows us to interpret the entire new mineralized gold camp that Mawson has defined. This new interpretation has led to the definition of more than 65 kilometres of host stratigraphy in the project area. The Paleoproterozoic Gold target style is a geological concept and is not necessarily indicative of the mineralization style that will eventually exist on the Property. The exploration programs defined for 2018 will systematically test some of the target areas, in order to test structural and stratigraphic traps that may host this style of gold mineralization. # **Environment and Permitting** The Rompas-Rajapalot project is still in the exploration phase and significant work is required before progression to an advanced exploration project. Finland has rigorous regulatory processes with strict environmental standards and we are committed at this early project stage to work with the regional and national authorities and broader stakeholder groups to develop the project in a responsible way. Mawson has completed four years of flora and water base line studies and environmental impact assessments at Rompas-Rajapalot. The Company looks forward to continuing to work closely with both the mining and environmental authorities and other stakeholders over the coming years to ensure our work is conducted according to sustainable and global best practice methods. In November 2014, Mawson announced the appointment of environmental specialist, Ms. Noora Ahola to the position of Environmental Leader, Finland. Ms. Ahola is a Forestry Engineer with a Masters Degree in Landscape Management. She has developed strong experience within the Finnish environmental administration, applying environmental legislation towards nature protection. Her most recent role has been with The Centre for Economic Development, Transport and the Environment for Lapland (ELY-Centre) in the Nature Protection Unit as a project manager for a program based on developing biodiversity and ecological connections between Natura 2000 sites. On September 14, 2016, Ms. Ahola was appointed as a director of the Company and as a member of the Environmental, Health and Safety Committee of the Company. Ms. Ahola advises the Company on the monitoring and management of key environmental plans and risks associated with Mawson's projects to ensure that environmental factors are effectively addressed and managed. Working closely with local communities and government, Ms. Ahola manages consultants and ensures that environmental criteria are integrated into the design of exploration projects. The role is a key member of the exploration team and she is responsible for ensuring all environmental requirements are delivered on time and within scope. Mawson carries out its exploration activities in large areas, including areas with a conservation status. Natural regeneration capacity in the northern regions is slower than in the southern regions due to the cold climate and short growing season. All the activities must therefore be carefully and thoughtfully planned to maintain and achieve sustainability. The Company is committed to carry out all the research measures implemented with special care, according to the national legislation, guidelines and recommendations provided by the environmental administration authorities. In addition, international legislation and in particular the Habitats and Birds Directives guide the Company's operations. As a part of Company's development it also invests in new exploration methods and techniques with less significant impacts. The Company's aim is to carry out all their activities with ecologically, socially and economically sustainable manners. The Company also requires its subcontractors to the corresponding accountability in all their activities. The main areas of Company's operations, Rompas and Rajapalot, are located on the border of Rovaniemi and Ylitornio municipalities in northern Finland. The Company has completed a variety of nature studies, and also implemented a Natura
2000 impact assessment related to the future and ongoing exploration activities. Currently there exists little scientific research on the impacts of different kinds of exploration methods on nature and the environment in these areas and therefore the Company's exploration activities and their impacts on the natural environment, species and water is monitored continuously. Monitoring activities will provide long-term research information on how sampling and exploration work should be carried out in a sustainable way without causing damage to environmental values. For the recent core sampling program at Rajapalot, Mawson has completed biological mapping of all areas where drilling will take place, and worked together with all authorities to minimize its impacts, including the capture of all drill cuttings, reduction in total machine weight and the placement of walkways to reduce foot traffic. Certain areas of the Rompas-Rajapalot areas (namely claim areas Kairamaat 1-3) are defined as European Union Natura 2000 designated areas. Natura 2000 sites cover about 14.6% of Finland and approximately 30% of Northern Finland. Natura 2000 is the centrepiece of EU nature and biodiversity policy. It is an EU-wide ecological network of nearly 26,000 sites in the 27 EU countries, established under the 1992 Habitats Directive and covering almost 18% of the EU's land area. The aim of the network is to assure the long-term survival of Europe's most valuable and threatened species and habitats. Natura 2000 is not a system of strict nature reserves where all human activities are excluded. Development in Natura is defined by clear rules and the emphasis is on ensuring that future management is sustainable, both ecologically and economically. Eighty-two percent of the Rompas-Rajapalot project lies outside of Natura areas. Mawson area permitted to complete all exploration at Rajapalot inside and outside Natura zones. The next permitting step required will come at mining where biodiversity offsets for Natura areas will be required. There are mining projects that have been permitted and are in production in Natura areas within Europe, including Krumovgrad (gold mine Bulgaria), Prosper Haniel (coal mine in Germany) and Mechelse Heide Zuid (sand mine in Belgium). Anglo American is currently permitting the Sakatti Ni-Cu-PGE project for mining in Finland. # **Future Developments** A 15,000 metre diamond drill program is planned to commence in January 2018 in the Rajapalot area, in addition to drilling on the Männistö permit that commenced in December 2017. Approximately 50% of the 15,000 m will be concentrated on drilling to resource definition status and the remaining drill metres will be used on a more regional basis (within a 4 x 4 km area of known gold occurrences, boulder fields and geophysical targets). Infill ground magnetics (approximately 70 line kilometres) at Rajapalot will be completed in January 2018. Coverage across Rajapalot will then be at 25 metre line spacing. ## **Selected Financial Data** The following selected financial information is derived from the unaudited condensed consolidated interim financial statements of the Company. | | Fiscal | 2018 | | Fiscal | Fiscal 2016 | | | | |-----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | | Nov 30
2017
\$ | Aug 31
2017
\$ | May 31
2017
\$ | Feb 28
2017
\$ | Nov 30
2016
\$ | Aug 31
2016
\$ | May 31
2016
\$ | Feb 29
2016
\$ | | Operations: | | | | | | | | | | Revenues | Nil | Expenses | (381,829) | (467,267) | (491,829) | (476,915) | (1,276,504) | (279,815) | (271,899) | (466,729) | | Other items | 28,605 | (9,702) | 73,200 | 7,106 | (571,900) | 5,063 | (43,398) | 12,149 | | Deferred income tax | Nil | Nil | (40,500) | Nil | Nil | Nil | Nil | Nil | | Net loss | (353,224) | (476,969) | (459,129) | (469,809) | (1,848,404) | (274,752) | (315,297) | (454,580) | | Other comprehensive | | | | | | | | | | income (loss), net | (1,240) | (6,262) | 27,033 | 9,830 | 617,198 | 40,662 | 11,638 | 15,327 | | Comprehensive loss | (354,464) | (483,231) | (432,096) | (459,979) | (1,231,206) | (234,090) | (303,659) | (439,253) | | Basic and diluted | | | | | | | | | | loss per share | (0.00) | (0.00) | (0.01) | (0.00) | (0.02) | (0.00) | (0.00) | (0.01) | | Dividends per share | Nil | Balance Sheet: | | | | | | | | | | Working capital | 3,279,599 | 3,863,001 | 4,719,472 | 7,389,113 | 3,007,038 | 3,480,750 | 3,990,281 | 4,812,969 | | Total assets | 22,918,185 | 22,677,589 | 23,552,740 | 23,886,387 | 18,180,674 | 18,305,748 | 18,452,124 | 19,103,495 | | Total long-term liabilities | Nil # **Results of Operations** Three Months Ended November 30, 2017 Compared to Three Months Ended August 31, 2017 During the three months ended November 30, 2017 ("Q2") the Company reported a net loss of \$353,224 compared to a net loss of \$476,969 for the three months ended August 31, 2017 ("Q1"). The primary factor for the decrease in loss is attributed to the recognition of share-based compensation of \$84,000 in Q1 compared to \$nil in Q2. Six Months Ended November 30, 2017 Compared to Six Months Ended November 30, 2016 During the six month period ended November 30, 2017 (the "2017 period") the Company reported a net loss of \$830,193 a decrease of \$1,292,963 from the net loss of \$2,123,156 for the six months ended November 30, 2016 (the "2016 period"). The decrease in loss in the 2017 period is primarily attributed to: - (i) a decrease of \$803,400 in share-based compensation from \$877,800 in the 2016 period to \$84,000 in the 2017 period; and - (ii) the sale of 3,500,000 common shares of Hansa Resources Limited in the 2016 period for proceeds of \$140,000 resulting in a realized loss on sale of investment of \$575,000. Excluding share-based compensation, the Company recognized an overall increase of \$86,577 in expenses, from \$678,519 in the 2016 period to \$765,096 in the 2017 period. Significant variances and items of note are as follows: (i) professional fees of \$101,562 (2016 - \$84,553) were incurred. The increase during the 2017 period reflects additional services engaged with independent consultants for consulting and general corporate services; - (ii) incurred corporate development expenses of \$55,311 (2016 \$12,184). During the 2017 period the Company attended several investment conferences and initiated marketing campaigns to provide information on the Company through various Canadian and USA media; and - (iii) legal fees of \$41,918 (2016 \$10,436) were incurred. As the Company is in the exploration stage of investigating and evaluating its unproven mineral interests, it has no source of operating revenue. Interest income is generated from cash on deposit and short-term money market instruments issued by major financial institutions. During the 2017 period the Company reported interest income of \$23,705 compared to \$14,221 during the 2016 period. # **Financings** No financing were completed during the 2017 or 2016 period. Subsequent to November 30, 2017 the Company completed a private placement financing of 15,023,285 units of the Company for gross proceeds of \$5,258,150 with each unit consisting of one common share and one-half share purchase warrant. Each whole warrant entitles the holder to purchase an additional common share at a price of \$0.50 on or before December 8, 2019. The Company paid finders' fees of \$274,749 and issued compensation options to acquire 773,702 at a price of \$0.44 per share on or before December 8, 2019. The Company also issued finder's warrants to acquire 1,290 common shares at a price of \$0.50 on or before December 8, 2019. As at November 30, 2017 the Company had received share subscriptions totalling \$143,500 and incurred share issue costs of \$17,205 on this private placement. Subsequent to November 30, 2017 the Company also issued a total of 858,130 common shares for proceeds of \$257,439 on the exercise of warrants. ## **Investments** The Company's holdings in the common shares of publicly held companies have been designated as available-for-sale for accounting purposes and are measured at fair value, using quoted values. As at November 30, 2017 the quoted market value of the remaining investments in Kingsmen Resources Limited and Thomson Resources Ltd. was \$27,674. # **Exploration and Evaluation Assets** | | As | at November 30, 20 | 017 | As at May 31 2017 | | | | |------------------|----------------------------|--|-----------------------|----------------------------|--|---------------------|--| | | Acquisition
Costs
\$ | Deferred
Exploration
Costs
\$ | Total
\$ | Acquisition
Costs
\$ | Deferred
Exploration
Costs
\$ | Total
\$ | | | Finland
Other | 2,460,327
104,496 | 16,474,431
123,938 | 18,934,758
227,894 | 2,297,575
7,548 | 15,615,769
741 | 17,913,344
8,289 | | | | 2,564,823 | 16,597,829 | 19,162,652 | 2,305,123 | 15,616,510 | 17,921,633 | | During the 2017 period the Company incurred a total of \$1,241,019 (2016 - \$727,890) on the acquisition, exploration and evaluation of its unproven resource assets. \$1,021,414 (2016 - \$727,890) was incurred on its Finnish properties and \$219,605 (2016 - \$nil) on its other properties. Exploration activities during the 2017 period were focused on the drilling at the Rajapalot project area, details of which are described in "Exploration Projects" in this MD&A. # **Financial Condition / Capital Resources** As at November 30, 2017 the Company had working capital of \$3,279,599. Subsequent to November 30, 2017 the Company received a further \$5,114,650 on its private placement financing and \$257,439 on the exercise of warrants. See "Financings". The Company believes that
it has sufficient financial resources to conduct ongoing exploration activities and meet anticipated corporate administration costs for the upcoming twelve month period. However, exploration activities may change due to ongoing results and recommendations, or the Company may acquire additional properties, which may entail significant funding or exploration commitments. The Company may be required to obtain additional financing. The Company has relied solely on equity financing to raise the requisite financial resources. While it has been successful in the past, there can be no assurance that the Company will be successful in raising future financing should the need arise. # **Off-Balance Sheet Arrangements** The Company has no off-balance sheet arrangements. # **Proposed Transactions** There are no proposed transactions. # **Critical Accounting Estimates** The preparation of financial statements in conformity with IFRS requires management to make estimates and assumptions that affect the reported amounts of assets and liabilities and disclosure of contingent assets and liabilities at the date of the financial statements, and the reported amounts of revenues and expenditures during the reporting period. A detailed summary of all the Company's significant accounting policies is included in Note 3 to the May 31, 2017 and 2016 annual consolidated financial statements. # **Changes in Accounting Policies** There are no changes in accounting policies. # **Related Parties Disclosures** A number of key management personnel, or their related parties, hold positions in other entities that result in them having control or significant influence over the financial or operating policies of those entities. Certain of these entities transacted with the Company during the reporting period. The Company has determined that key management personnel consists of members of the Company's current and former Board of Directors and its executive officers. (a) During the 2017 and 2016 periods the following compensation was incurred: | | 2017
\$ | 2016
\$ | |--|------------|------------| | | Ψ | Ψ | | Management fees - Mr. Hudson - Chairman, CEO and director | 72,000 | 90,000 | | Professional fees - Mr. Cook - President | 99,741 | 85,760 | | Professional fees - Mr. DeMare - CFO and director | 12,000 | 12,000 | | Professional fees - Mr. Henstridge - director | 9,000 | 9,000 | | Professional fees - Mr. Saxon - director | 9,000 | 9,000 | | Professional fees - Mr. Maclean - director | 9,000 | 9,000 | | Professional fees - Mr. Williams - director ⁽¹⁾ | 11,250 | - | | Professional fees and salaries - Ms. Bermudez - Corporate Secretary ⁽³⁾ | 12,180 | 6,340 | | Salaries - Ms. Ahola - director ⁽²⁾ | 60,470 | 24,391 | | Share-based compensation - Mr. Hudson | - | 190,000 | | Share-based compensation - Mr. DeMare | - | 76,000 | | Share-based compensation - Mr. Cook | - | 76,000 | | Share-based compensation - Mr. Williams | 84,000 | - | | Share-based compensation - Ms. Bermudez | - | 38,000 | | Share-based compensation - Mr. Henstridge | - | 76,000 | | Share-based compensation - Mr. Saxon | - | 76,000 | | Share-based compensation - Mr. Maclean | - | 76,000 | | Share-based compensation - Ms. Ahola | <u>-</u> | 76,000 | | | 378,641 | 929,491 | ⁽¹⁾ Appointed director on June 14, 2017 and member of the Advisory committee. During the six months ended November 30, 2017 the Company allocated the \$294,641 (2016 - \$245,491) professional fees and salaries based on the nature of the services provided: expensed \$140,832 (2016 - \$129,000) to directors and officers compensation; \$2,800 (2016 - \$nil) to general exploration costs; \$nil ⁽²⁾ Appointed director on September 14, 2016 and member of the Environmental Health and Safety committee. ⁽³⁾ Since June 1, 2017 Ms. Bermudez's compensation was paid to a private corporation owned by Ms. Bermudez. Prior thereto the Company paid Ms. Bermudez as an employee of the Company. (2016 - \$6,340) to salaries and benefits; and capitalized \$151,009 (2016 - \$110,151) to exploration and evaluation assets. As at November 30, 2017 \$58,765 (May 31, 2017 - \$40,967) remained unpaid. The Company has a management agreement with Mr. Hudson, its Chairman and CEO which provides that in the event the CEO's services are terminated without cause or upon a change of control of the Company, a termination payment of two years and six months of compensation, at \$12,000 per month, is payable. If the termination had occurred on November 30, 2017, the amount payable under the agreement would be \$360,000. (b) During the six months ended November 30, 2017 the Company incurred a total of \$30,500 (2016 - \$28,200) with Chase Management Ltd. ("Chase"), a private corporation owned by Mr. DeMare, the CFO of the Company, for accounting and administration services provided by Chase personnel, excluding the CFO, and \$2,010 (2016 - \$2,010) for rent. As at November 30, 2017 \$4,170 (May 31, 2017 - \$3,670) remained unpaid ## **Risks and Uncertainties** The Company competes with other mining companies, some of which have greater financial resources and technical facilities, for the acquisition of mineral concessions, claims and other interests, as well as for the recruitment and retention of qualified employees. The Company believes that it is in compliance in all material regulations applicable to its exploration activities. The Company is dealing with certain Finnish environmental authorities in regards to certain issues on the Rompas property. See also "Exploration Projects - Finland - Environment and Permitting". Existing and possible future environmental legislation, regulations and actions could cause additional expense, capital expenditures, restrictions and delays in the activities of the Company, the extent of which cannot be predicted. Before production can commence on any properties, the Company must obtain regulatory and environmental approvals. There is no assurance that such approvals can be obtained on a timely basis or at all. The cost of compliance with changes in governmental regulations has the potential to reduce the profitability of operations. The Company's material mineral properties are located in Scandinavia and consequently the Company is subject to certain risks, including currency fluctuations which may result in the impairment or loss of mining title or other mineral rights, and mineral exploration and mining activities may be affected in varying degrees by governmental regulations relating to the mining industry. Additional risks and uncertainties relating to the Company and its business can be found in the "Risk Factors" section of the Company's most recent Annual Information Form available at www.sedar.com or the Company's website at www.mawsonresources.com. ## **Outstanding Share Data** The Company's authorized share capital is unlimited common shares without par value. As at January 12, 2018 there were 122,591,593 issued and outstanding common shares. In addition, there were 5,070,000 share options outstanding, at exercise prices ranging from \$0.35 to \$0.39 per share and 15,786,635 warrants outstanding at exercise prices ranging from \$0.44 to \$0.60 per share. ## **Disclosure Controls and Procedures** Disclosure controls and procedures are designed to provide reasonable assurance that material information is gathered and reported to senior management, including the Chief Executive Officer and Chief Financial Officer, as appropriate to permit timely decisions regarding public disclosure. Management, including the Chief Executive Officer and Chief Financial Officer, has evaluated the effectiveness of the design and operation of the Company's disclosure controls and procedures. Based on this evaluation, the Chief Executive Officer and Chief Financial Officer have concluded that the Company's disclosure controls and procedures, as defined in National Instrument 52-109 - Certification of Disclosure in Issuer's Annual and Interim Filings ("52-109"), are effective to ensure that the information required to be disclosed in reports that are filed or submitted under Canadian Securities legislation are recorded, processed, summarized and reported within the time period specified in those rules. Management relies upon certain informal procedures and communication, and upon "hands-on" knowledge of senior management. Due to the small staff, however, the Company will continue to rely on an active Board and management with open lines of communication to maintain the effectiveness of the Company's disclosure controls and procedures. # **Internal Control over Financial Reporting** The management of the Company is responsible for establishing and maintaining adequate internal control over financial reporting. Internal control over financial reporting is a process to provide reasonable assurance regarding the reliability of the Company's financial reporting for external purposes in accordance with IFRS. Internal control over financial reporting includes maintaining records that in reasonable detail accurately and fairly reflect the Company's transactions and dispositions of the assets of the Company; providing reasonable assurance that transactions are recorded as necessary for preparation of the Company's consolidated financial statements in accordance with IFRS; providing reasonable assurance that receipts and expenditures are made in accordance with authorizations of management and the directors of the Company; and providing reasonable assurance that unauthorized acquisition, use or disposition of Company's assets that could have a material effect on the Company's consolidated financial statements would be prevented or detected on a timely basis. Because of its inherent limitations, internal control over financial reporting is not intended to provide absolute
assurance that a misstatement of the Company's consolidated financial statements would be prevented or detected. Management conducted an evaluation of the effectiveness of the Company's internal control over financial reporting based on the framework and criteria established in *Internal Control – Integrated Framework*, issued by the Committee of Sponsoring Organizations of the Treadway Commission (2013). This evaluation included review of the documentation of controls, evaluation of the design effectiveness of controls, testing of the operating effectiveness of controls and a conclusion on this evaluation. Based on this evaluation, management concluded that the Company's internal control over financial reporting was effective as of November 30, 2017. ## **Changes in Internal Control over Financial Reporting** Internal control over financial reporting is a process designed to provide reasonable assurance regarding the reliability of financial reporting and the preparation of financial statements for external purposes in accordance with IFRS. The Chief Executive Officer and Chief Financial Officer have concluded that there has been no change in the Company's internal control over financial reporting during the period beginning on September 1, 2017 and ending on November 30, 2017 that has materially affected, or is reasonably likely to materially affect, the Company's internal control over financial reporting.