

NI 43-101 Technical Report

Sunday Creek Gold-Antimony Project Victoria, Australia

Prepared for

Mawson Gold Ltd

By:

Mr Mark Saxon

BSc (Hons) (Geology), FAusIMM, MAIG; Bendigo, Victoria, Australia

Effective Date: September 25th, 2024

Table of Contents

Table	e of Contents	i			
Lis	st of Tables	iii			
Lis	st of Figures	iv			
1.0	Summary	2			
2.0	Introduction	5			
3.0	Reliance on Other Experts	8			
4.0	Property Description and Location	9			
4.1	1 Land Tenure	9			
4.2	2 Native Title	10			
4.3	3 Mining Law	10			
	Exploration Licences	10			
	Retention Licence	11			
4.4	4 Royalties	11			
4.5	5 Environmental Liabilities	12			
5.0	Accessibility, Climate, Local Resources, Infrastructure and Physiography	13			
6.0	D History				
7.0	Geological Setting and Mineralization				
8.0	Deposit Types	26			
8.1	1 Deposit Type Exploration Strategies	26			
9.0	Exploration	27			
9.1	1 Geological Mapping	27			
9.2	2 Geochemistry	28			
9.3	3 Trenches	31			
9.4	4 LiDAR	31			
9.5	5 Geophysics				
10.0	Drilling	42			
	Au Equivalent	45			
	2020 Drilling	45			
	2021 Drilling	45			
	2022 Drilling	45			
	2023 Drilling	46			
	2024 Drilling	46			
	Drilling Methods	46			
	Downhole Surveys	46			

Int	Interpretation of Drilling Results46					
11.0	11.0 Sample Preparation, Analyses and Security					
11.1	11.1 Diamond Core Sampling					
11.2	11.2 Sample Preparation49					
11.3	11.3 Sampling Method and Approach50					
Sa	mple Analysis	50				
Go	old Analysis	51				
An	timony Analysis	52				
M	ultielement Analysis	52				
La	boratory Reviews	52				
11.4	Assay Quality Assurance/Quality Control	52				
An	timony analysis precipitation issues	52				
CR	M Results	53				
CR	M Results Discussion	54				
Bla	anks	59				
Pu	lp Duplicates	60				
11.5	Umpire Check Assay Program – Pulp Samples	62				
Qı	alified Persons Opinion	64				
12.0	Data Verification	65				
Data	Limitations	65				
Adeq	juacy of the Data	65				
13.0	Mineral Processing and Metallurgical Testing	67				
14.0	Mineral Resource Estimates	72				
15.0	Mineral Reserve Estimates	72				
16.0	Mining Methods	72				
17.0	Recovery Methods	72				
18.0	Project Infrastructure	72				
19.0	19.0 Market Studies And Contracts72					
20.0 Environmental Studies, Permitting And Social Or Community Impact						
21.0 Capital And Operating Costs						
22.0 Economic Analysis						
23.0 Adjacent Properties						
24.0 Other Relevant Data and Information75						
25.0	25.0 Interpretation and Conclusions					
25.1	25.1 Exploration Results and Interpretations76					
Ex	ploration Target	77				

25.2	Qualified Person Opinion on SXG's Exploration Programs	79	
25.3	Risks and Uncertainties	80	
26.0	Recommendations	81	
Referen	nces	83	
Append	Appendix 1: Drillhole Information		

LIST OF TABLES

Table 1: Property Tenement Package	9
Table 2: Tenure ownership prior to Mawson in 2020	14
Table 3: Drill Hole Summary of drillholes at the main Sunday Creek area	42
Table 4: Statistics for percentage passing a 75µm grind size; target is 80%	51
Table 5: Certified reference materials and certified assay methods	53
Table 6: Routine certified reference material results for gold by fire assay	53
Table 7: Routine certified reference material results for antimony	54
Table 8: Pulp duplicate gold statistics	60
Table 9: Pulp duplicate antimony statistics	60
Table 10: Gold by Fire Assay Umpire Check	62
Table 11: Antimony Umpire Check	63
Table 12: Sample selected for metallurgical test work:	67
Table 13: Rising Sun hypothetical flotation production (no gravity)	70
Table 14: Apollo hypothetical flotation production (no gravity)	70
Table 15: Ownership details – Sunday Creek adjacent properties	74
Table 16: Sunday Creek Exploration Target for Apollo and Rising Sun at the Sunday Creek Pro	oject 77
Table 17: Future work recommendations	82
Table 18: Collar Information of all holes completed by Mawson / Southern Cross Gold	85
Table 19: Sample results at a 2m @ 1 g/t AuEq lower cut	87

LIST OF FIGURES

Figure 1. Southern Cross Gold Australian project locations in Victoria (Sunday Creek and Redcastle)	
and Queensland (Mount Isa). Map projection in WGS847	
Figure 2: Location diagram for 100 % Southern Cross Gold owned Sunday Creek Project including the	
granted exploration permits EL7232 and EL6163 and retention licence RL 6040. WGS84 map	
projection. Source OpenStreetMap [®] 12	
Figure 3: Historic mining Sections of Golden Dyke prospect15	
Figure 4: Historic mining Sections of Apollo Prospect	
Figure 5. Simplified Victorian geological map showing key tectonostratigraphic zones and locations of	
key gold mines and gold occurrences. (Open source data from Geological Survey of Victoria; Creative	
Commons Attribution 4.0 International License.)	
Figure 6. Diagram indicating inferred relationship between sedimentation, structural regime during	
orogenic events, granite emplacement and gold mineralization (from Wilson et al. 2020)	
Figure 7. Simplified Victorian geological map centred on Southern Cross Gold project areas (primarily	
Bendigo and Melbourne zones) with late Devonian intrusives and volcanics. The ROFR and included	
Nagambie-owned permits are shown with orange borders and the Southern Cross and option and	
joint venture permits are indicated for the two project areas. Open source data from Geological	
Survey of Victoria; Creative Commons Attribution 4.0 International License	
Figure 8: Summary of the stratigraphy, red box outlines units observed in the Sunday Creek Project	
area to date. Source: Geological Survey of Victoria, 1977. Kinglake. 1 mile to 1 inch, geological map.	
Department of Mines, Victoria	
Figure 9. Sunday Creek Project area geological map. Map projection GDA94, zone 55. Open source	
data from Geological Survey of Victoria; Creative Commons Attribution 4.0 International License22	
Figure 10. Regional aeromagnetic image (RTP) of Sunday Creek Project area. The ovoid Mt	
Disappointment Granite is clear to the south of the Project area with its associated external ring of	
magnetic hornfels broken by NW-striking faults. Map projection GDA94, zone 55. Open source data	
from Geological Survey of Victoria; Creative Commons Attribution 4.0 International License	
Figure 11: Schematic Plan view and section view of the geology and alteration within the Sunday	
Creek Project area, with high confidence structural measurements of the mineralization	
Figure 12: Regional geology interpretation	
Figure 13: Surface topography and exploration leases overlaid with the acquired geochemical	
sampling lines	
Figure 14: A section of the shallow trench dug during the 2021 period	
Figure 15: Location of the LiDAR survey, and Sunday Creek tenure. GDA94 Z55	
Figure 16: Hillshaded LiDAR showing historic workings in the main area of Sunday Creek of	
RL006040	
Figure 17: Hillshaded LiDAR showing regional historic workings of EL006163.	
Figure 18: Location Map of the Offset Dipole-Dipole Station Survey.	
Figure 19: Detailed Location Map of the Offset Dipole-Dipole Station Locations	
Figure 20: Offset Dipole Dipole Inverted Chargeability Isosurfaces. A original 2020 processing, B 2024	
reprocessing	
Figure 21: Location of the Ground Magnetics Survey40	
Figure 22: Ground Magnetics Survey - Total Magnetic Intensity	
Figure 23: Sunday Creek plan view showing selected highlight results from diamond drilling	
Figure 24: Sunday creek longitudinal section showing selected highlight results from diamond	
drilling	
Figure 25: Interpreted inclined plan section of SDDSC107	

Figure 26: Analysis for gold via Fire Assay or Screen Fire Assay, illustrating a comparison of 115 pairs	
on a logarithmic scale	2
Figure 27: OREAS230 gold by fire assay certified reference material control plot55	5
Figure 28: OREAS232b gold by fire assay certified reference material control plot55	5
Figure 29: OREAS291 gold by fire assay certified reference material control plot56	5
Figure 30: OREAS245 gold by fire assay certified reference material control plot56	5
Figure 31: OREAS238b antimony standard certified reference material control plot57	7
Figure 32: OREAS291 antimony standard certified reference material control plot57	7
Figure 33: GSB-10 antimony standard certified reference material control plot	3
Figure 34: Gold Blank assay control plot, red line represents 0.1 g/t Au59)
Figure 35: Antimony Blank assay control plot, red line represents 50ppm Sb60)
Figure 36: Pulp duplicate gold statistics, red line represents a y=x line61	L
Figure 37: Pulp duplicate antimony statistics, red line represents a y=x line61	L
Figure 38: Relative paired difference plot, original versus umpire checks, gold by fire assay	3
Figure 39: Relative paired difference plot, original versus umpire checks, Antimony	ł
Figure 40: Sunday Creek adjacent properties74	ŧ
Figure 41: Longitudinal section showing the exploration target area developed in January 202479)

CERTIFICATE OF QUALIFIED PERSON

I, Mark Saxon, FAusIMM, MAIG, do hereby certify that:

This Certificate is made in relation to a technical report entitled "NI43-101 Report Sunday Creek Gold-Antimony Project, Victoria, Australia" and dated 25th September 2024, (the "Technical Report") with respect to the Sunday Creek Gold-Antimony Project (the "Property").

1. I graduated with a Bachelor of Science in Geology (Honours) from the University of Melbourne in 1991.

2. I am a Fellow of the Australasian Institute of Mining and Metallurgy (FAusIMM Nr 221846), of which I have been a member since 2004; and a Member of the Australian Institute of Geoscientists (MAIG Nr 3042) since 2004.

3. I have worked as a geologist for over 30 years since graduation including gold and base metals. I have worked in a range of technical roles from managing exploration stage projects through to technical and financial project studies. I have worked on projects both within Australia and internationally.

4. I have read National Instrument 43-101 (NI 43 101) and Form 43-101 F1, and the Technical Report has been prepared in compliance with that instrument and form.

5. I have read the definition of Qualified Person set out in NI 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfil the requirements to be a Qualified Person for the purposes of NI 43-101.

6. For the purposes of the Technical Report, I contributed to writing this report and made the proposals for work contained therein. I am responsible for all sections of the report.

7. I visited the property and its field offices on 29 November 2022 and for two full days on 11-12 September 2024. During the site visits I reviewed the geological maps, drill logs, drill core and all other pertinent data from the archives.

8. I am independent of the issuer applying the tests in Section 1.5 of NI 43-101, and of the Property and Southern Cross Gold Ltd. in accordance with the TSX Venture Appendix 3F, Mining Standard and Guidelines.

9. I have not had prior involvement with the Property that is the subject of the Technical Report, however, I am a less than 1% shareholder of Mawson Gold Limited, which does not represent a personal material investment to me and, therefore, my independence is not compromised due to such shareholdings applying the considerations set forth in section 1.5(2) of the Companion Policy to NI 43-101.

10. At the effective date of the technical report, to the best of the author's knowledge, information, and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated: 25 September 2024

"Mark Saxon "

Mark Saxon

1.0 Summary

The Sunday Creek Project is 100% owned by Southern Cross Gold Ltd (SXG:ASX) ("SXG" or "the Company". The Project is a significant example of an epizonal-style gold-antimony project and is located 60km north of Melbourne, Australia.

The Sunday Creek Project comprises two exploration permits and a retention licence totalling 16,564 hectares (held by Clonbinane Goldfield Pty Ltd ("CGF"), a wholly owned subsidiary of Southern Cross Gold Ltd). SXG is also the freehold landholder of 133.29 hectares that form the key portion in and around the main drilled area at the Sunday Creek Project.

Gold and antimony form in a relay of vein sets that cut across a steeply dipping zone of intensely altered rocks (the "host"). When observed from above, the host resembles the side rails of a ladder, where the sub-vertical mineralised vein sets are the "rungs" that extend from surface to depth. At Apollo and Rising Sun these individual rungs have been defined over 600m depth extent from surface to 1,100m below surface, are 2.5 -3.5m (up to 10m wide), and 20m to 100m in strike.

The Project now contains a total of forty-three (43) >100 g/t AuEq x m and forty-nine (49) >50 to 100 g/t AuEq x m drill holes by applying a 2 m @ 1 g/t lower cut.

As of 15th July 2024, 148 drill holes for 61,570 m have been drilled by SXG from Sunday Creek since late 2020. This includes 10 holes for 439m from Sunday Creek where drillholes abandoned due to deviation or hole conditions. 14 drillholes for 2,383m have been reported regionally outside of the main Sunday Creek drill area. A total of 64 historic drill holes for 5,599m were completed from the late 1960s to 2008.

A systematic drill program is strategically targeting these significant vein formations. Initially these have been defined over 1,350m strike of the host from Christina to Apollo prospects, of which approximately 620m has been more intensively drill tested (Rising Sun to Apollo). At least 50 'rungs' have been defined to date, defined by high-grade intercepts (20 g/t to >7,330 g/t Au) along with lower grade edges. Ongoing step-out drilling is aiming to uncover the potential extent of this mineralised system.

Five diamond drilling rigs are currently operating at Sunday Creek with a sixth diamond rig scheduled to commence drilling in Q4, 2024. The Company is on track to complete >30,000 diamond drill metres in calendar 2024.

Geologically, the Project is located within the Melbourne Structural Zone in the Lachlan Fold Belt. The regional host to the Sunday Creek mineralization is an interbedded turbidite sequence of siltstones and minor sandstones metamorphosed to sub-greenschist facies and folded into a set of open northwest trending folds.

Mawson Gold Ltd (MAW:TSXV) ("Mawson") currently owns approximately 48.85% of the issued shares of SXG (SXG Shares) as at the date of this report. Mawson has held these shares in SXG since SXG's ASX listing in May 2022, as the SXG listing was by way of a spin-off of what was then 58.3% of Mawson's interest in SXG and its Australian assets. Following implementation of the Scheme, Mawson and SXG, and each of their subsidiaries, will form the Combined Group, whereby SXG will become a wholly owned subsidiary of Mawson.

Mawson entered into a binding Scheme Implementation Agreement (SIA) with SXG on 30 July 2024 under which it is proposed Mawson will acquire 100% of the shares in SXG it does not already own, by way of a Scheme of Arrangement (Scheme).

The focus of the Company is to search within the Sunday Creek property for gold deposits analogous in mineralization style, type and timing to the Fosterville gold mine. These epizonal deposits are associated with the Tabberabberan orogeny of the Mid-Devonian and have a characteristic metallogenic signature of Au-As-Sb mineralization. The epizonal deposits of Central Victoria are distinctly different to the Early Devonian Bindian & Benambran orogenic mesozonal gold mineralization of the Ballarat and Bendigo goldfields found further west.

A two-phase work program is recommended with an estimated total cost of CDN\$18.1 million with a 10% contingency. A summary of the program with cost estimates is presented in Table 17.

Phase 1 work recommendations are estimated to cost approximately CDN\$3.2 million with a 10% contingency, and includes:

- A Phase 1 diamond drilling program consists of 1) step-out and infill drilling to further define and delineate the gold mineralization at known prospects in the Rising Sun and Apollo blocks,
 2) target delineation drilling at the Golden Dyke, Christina and Apollo East to follow-up on promising 2020-2023 surface programs that yielded favourable geological interpretations, 3) exploratory drilling along the main dyke trend to test targets identified through surface exploration work programs. A total of approximately 10,000m of drilling is recommended. Assuming an all-in drill cost of CDN\$250/m, which includes analytical work. The Phase 1 drill program is estimated to cost CDN\$2.5m.
- 2. Regional prospecting and soil geochemical sampling programs, and rock sampling programs along the prospective dyke trend. The work programs are estimated to cost CDN\$170K.
- Ongoing geophysical surveys along the main dyke trend that include an offset dipole-dipole IP survey. The surveying, data processing, interpretation, and modelling is estimated to cost CDN\$450K.
- 4. Ongoing metallurgical test work that includes 1) Additional metallurgical testwork including sequential flotation, gravity focus of free-milling gold, and potential hydrometallurgical avenues available, and 2) identify samples to be tested for additional data in determining the comminution testing, Bond Ball Mill Work Index, and Bond Abrasion Index. The metallurgical test work is estimated to cost CDN\$70K.

Advancement to the Phase 2 work recommendations is contingent on the positive results of the Phase 1 work programs.

If additional work is required to advance the Sunday Creek Project, the QP recommends a Phase 2 work program that is estimated to cost approximately CDN\$16.4 million with a 10% contingency. The Phase 2 work program includes:

- A Phase 1 diamond drilling program consists of 1) step-out and infill drilling to further define and delineate the gold mineralization at known prospects in the RS, AP, GD, CH, AE and 2) continue with exploratory drilling along the main dyke trend. Approximately 50,000m of drilling is recommended. At an all-in cost of CDN\$250/m, which includes analytical work, the cost of the drill programs is estimated at CDN\$12.5m.
- 2. Advancement of metallurgical test work with flowsheet optimization studies, methodology of producing saleable products, and handling of by-products and waste materials. This work is estimated to cost CDN\$180K.

- 3. Continue with environmental baseline studies and community engagement and initiate marketing and possible mine planning studies. Environmental studies started in 2022 and include topics such as water quality, groundwater and surface water, plants/animals, wildlife, cultural/archaeological and air and noise quality monitoring. SXG should continue to communicate, educate and build relationships with community, Indigenous, and other stakeholders to explore employment and business opportunities, community investment opportunities, and the protection of community's environment. This work is estimated to cost CDN\$460K.
- 4. SXG has yet to disclose mineral resources at the Sunday Creek Project. Future technical reporting should include 3-D geological modelling, mineral resource estimation(s), and potentially, preliminary economic assessment that are prepared in accordance with JORC and CIM definition standards and guidelines (2012, 2014, 2019) and the disclosure rule, NI 43-101. Technical reporting is estimated to cost CDN\$90K.

2.0 Introduction

This report has been prepared for Mawson Gold Ltd ("Mawson"). The purpose of this report is to:

- Provide a review of the past exploration and discovery potential for the Sunday Creek Project in the Victorian Goldfields of Australia,
- Outline its relevance and adequacy to assess the mineralization potential of the area, and
- Provide recommendations for future work.

This report conforms to the guidelines set out by the National Instrument 43-101 Standard of Disclosure for Mineral Projects (NI 43-101).

The data presented and utilized by the author comes principally from the staff of Southern Cross Gold Ltd. Mawson currently owns approximately 48.85% of the issued shares of SXG as at the date of this report. Mawson has held these shares in SXG since SXG's ASX listing in May 2022, as the SXG listing was by way of a spin-off of what was then 58.3% of Mawson's interest in SXG and its Australian assets. Following implementation of the Scheme, Mawson and SXG, and each of their subsidiaries, will form the Combined Group, whereby SXG will become a wholly owned subsidiary of Mawson.

Mawson entered into a binding Scheme Implementation Agreement (SIA) with SXG on 30 July 2024 under which it is proposed Mawson will acquire 100% of the shares in SXG it does not already own, by way of a Scheme of Arrangement (Scheme).

In this context "Southern Cross Gold" refers to Southern Cross Gold Ltd and/or its wholly owned subsidiary companies, Clonbinane Goldfield Pty Ltd, Mawson Victoria Pty Ltd and Mawson Queensland Pty Ltd when not specifically stated.

SXG holds two Exploration Licence tenements (refer to Table 1.) and one Retention Licence (RL6040).

The information presented includes:

- 1. geological, topographical and mine maps,
- 2. legal and mineral tenement information,
- 3. drilling data, including geological logs, sections and assays,
- 4. geochemical data of soil and rock, including descriptions, locations and assays,
- 5. exploration Targets,
- 6. assay data QAQC and preliminary metallurgy testwork results,
- 7. interpretations and conclusions. Recommendations

The geochemical data for the Sunday Creek Project has been compiled by combining the information from various exploration companies that historically explored this area to create a comprehensive historical geochemical database. The data is mainly soil geochemical data. A rock chip database has been compiled. The integration of this data has led to a better understanding of the coverage of each property and standardized the information for direct comparison.

In the preparation of this report, the author has relied upon public and private information provided by the Company, which has sourced most of its information from Southern Cross Gold Pty Ltd.

All coordinates are referenced to GDA94 Z55 (EPSG:28355) unless otherwise stated.

The QP visited the Company's facility in Kilmore on 11 September 2024 to inspect the entire core management process such as receiving, logging, mark-up, sawing, sampling and dispatch. Data management was reviewed and the Project was viewed in Leapfrog. The QP interviewed all staff onsite

to better understand SXG's data, core and sampling processes. The Exploration Manager and GIS Geologist then took the QP to Sunday Creek that evening, where a community planning meeting was observed.

At 7am on the 12th September the QP inspected the five operating diamond drill rigs, observing their drilling operations and diamond core management. A trip to the core dispatch area showed how the diamond core was prepared for transport to the core shed in Kilmore. There was ample opportunity to walk over the site to inspect rehabilitated drill pads, the Driller's lay-down area and to see how historic workings had been made safe by fencing and sign posting.

Returning to the Kilmore core farm late morning allowed time to further review GIS data, analyse the drill assay QAQC procedures and review the preliminary metallurgical test programme. Quick-logging and detailed logging practices were demonstrated as well as incorporation of downhole survey data into the drillhole database.

Figure 1. Southern Cross Gold Australian project locations in Victoria (Sunday Creek and Redcastle) and Queensland (Mount Isa). Map projection in WGS84.

3.0 Reliance on Other Experts

The author has not relied on report, opinion or statement of another expert who is not a qualified person, or on information provided by the Company concerning legal, political, environmental or tax matters relevant to the technical report.

4.0 Property Description and Location

The Sunday Creek Project (Figure 2) is located 60 km north of Melbourne, and in part straddles the Hume Freeway. Clonbinane North Exploration Licence EL006163, and Retention Licence RL006040 cover undulating hilly terrain from 275 metres to 560 metres AHD at Mt Disappointment. Sunday Creek Exploration Licence EL007232 joins the Clonbinane tenements on the western side. It is largely cleared for agriculture with relict forest patches, between 260 metres and 320 metres AHD. Total area of the tenure is 16,900 hectares (Table 1).

The Hume Highway runs through the tenement with numerous sealed and gravel roads giving good access (Figure 5). The town of Wandong lies 6.2km at the southern end, and the small town of Waterford Park is 2.8km from the center of the retention license. The area experiences hot dry summers and cool winters; access is year-round.

The Company has leased a warehouse in nearby Kilmore, which houses the core shed and facilities as well as the administration offices. Processed core is stored indoors in two nearby warehouses.

Table 1: Property Tenement Package

Licence	Name	Status	Company	Area (Ha)	Grant Date	Expiry Date
			Clonbinane			
EL006163	Clonbinane	Granted	Goldfield	5,900	17/07/2017	16/07/2027
			Clonbinane			
EL007232	Clonbinane	Granted	Goldfield	10,700	17/12/2020	16/12/2025
			Clonbinane			
RL006040	Clonbinane	Granted	Goldfield	300	3/07/2017	2/07/2025

4.1 LAND TENURE

The legal status of the tenements is transparent and can be independently verified via the Victorian Government GIS website (GeoVic) <u>https://resources.vic.gov.au/geology-exploration/maps-reports-data/geovic</u>.

The area is comprised of private property and State-owned crown land. The crown land is in the form of various categories including State Forest and Restricted Crown Land. Both the types of government land categories allow mineral exploration, although the Restricted Crown Land require extra criteria to be met regarding environmental impact and rehabilitation.

In order to retain the exploration licences that comprise the Sunday Creek Project, the Company is required to incur certain exploration expenditures on Sunday Creek on a going forward basis. Under the mining law, a person is required to incur AUS \$150 per km2 in Year 1, AUS \$200 per km2 for each of Year 2, 3, and 4 and AUS \$300 per km2 for each year thereafter. Retention licences have expenditure based on individual expenditure and work commitments in the licence conditions.

Based on Sunday Creek being 16.6 km2 of exploration licence tenure and the Retention Licence, the Company will be required to incur exploration expenditures of \$639,100 in Year 2024 and \$549,800 in Year 2025. Compulsory relinquishments requirements exist for exploration licences after the 2nd and 4th year of 25% and 40% respectively, however such relinquishment requirements are currently on hold since 2020.

4.2 NATIVE TITLE

An Indigenous Land Use Agreement (ILUA) for the Taungurung Tribe is active for the Sunday Creek EL007232 tenement. Currently there are no native title claims over RL6040 although a native title clearance has been performed over all drill areas by the Taungurung Land and Waters Council.

4.3 MINING LAW

A mining concession allows its holder to carry out exploration activities within the area established in the respective concession title, provided that prior to the beginning of any exploration or mining activity, such concession title is granted by the Mining Authority, which is the Department of Jobs, Skills, Industry and Regions (DJSIR). Other government department permits are required depending upon location, jurisdiction, land owner or land manager and local government legislation.

Exploration Licences

An exploration licence gives the licence holder exclusive rights to explore for specific minerals within the specified licence area. No mining activities can be undertaken on an exploration licence.

Application Process

The Department of Jobs, Skills, Industry and Regions (DJSIR) regulates minerals exploration in Victoria. DJSIR's licence application process is outlined below.

- 1. Applicant submits application including all compulsory information and pays the fee
- 2. Applicant supplies extra information if requested.
- 3. DJSIR accepts and ranks application and advises applicant.
- 4. Applicant advertithe licence holderses licence application in local and state-wide papers within 14 days of acceptance and ranking.
- 5. Objections may be lodged within 21 days of advertisements.
- 6. Address any Native Title requirements*
- 7. DJSIR assesses application and objections. Applicant may be asked for additional information.
- 8. DJSIR makes recommendation to grant or refuse the licence.
- 9. Minister (or delegate) grants or refuses the licence.
- 10. If granted, license is registered.
- 11. Applicant and objectors told if licence is granted or refused

*If the application includes Crown land, may need to settle an Indigenous Land Use Agreement (ILUA) or Traditional Owner Settlement Act (TOSA) Land Use Agreement.

Low Impact Exploration

Low impact exploration is defined in the Act. Low impact exploration does not require an approved work plan. The Mineral Resources (Sustainable Development) Act 1990 (MRSDA) provides for two levels of low impact exploration – reconnaissance exploration and all other low impact exploration. Licence holders may commence reconnaissance exploration immediately, provided it does not involve:

- the use of equipment (other than non-mechanical hand tools) to excavate on the land; or
- the use of explosives on the land; or
- removing or damaging of any tree or shrub on the land

and the licence holder has the required public liability insurance and the appropriate consents, including for mining licensees, the Minister's authorisation to undertake "exploration only". Reconnaissance exploration does not require the lodgement of a rehabilitation bond or the giving of notice of intent to commence work. As a licensee (licence holder), you have a duty to consult affected community members during the entire exploration process. The licensee (licence holder) needs:

- the necessary consents (including ministerial consent if exploring on restricted Crown land)
- public liability insurance
- owner/occupier consent

Other Types of Exploration

As a licensee (licence holder), there is a duty to consult affected community members during the entire exploration process. If your activities are not *low impact* you will need:

- an approved work plan,
- a rehabilitation bond,
- the necessary consents (including ministerial consent if exploring on restricted Crown land)
- public liability insurance
- owner/occupier consent
- to give seven days' notice to the chief inspector and owner/occupier of land
- to comply with conditions to offset environmental impacts (if applicable).

For Restricted Crown Land a Work Plan for drilling is required to be approved by Parks Victoria. This applies to;

- RL006040 (approved workplan in place)
- EL007232 (no workplan in place)

In the case of drilling a bond is required which is usually set at AUD\$10,000 per tenement.

Retention Licence

A retention licence is suitable where a mineral resource is identified but the resource is not yet commercially viable to mine but may become so in the future. Or the resource is required to support an existing mining operation in the future.

4.4 ROYALTIES

Royalties apply to the production of gold and are payable to the Victorian State Government through the DJSIR. The royalty applies at a rate of 2.75% on the revenue realised from the sale of gold produced, less the selling costs. A royalty exemption applies on the first 2,500 oz of gold produced each year.

Additional royalties are payable to the Victorian State Government through the DJSIR at a rate of AUD\$0.87/t if waste rock or tailings is sold or provided to any third parties, since they are deemed to be quarry products.

There are no royalty agreements, back-in rights, payments, or other agreements and encumbrances in place with previous owners on the exploration licences and retention licence that is the subject of this Technical Report.

4.5 ENVIRONMENTAL LIABILITIES

To the knowledge of the author, Sunday Creek is not subject to any current environmental liabilities.

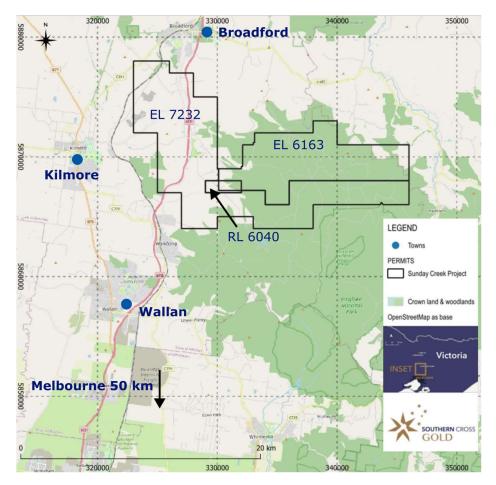


Figure 2: Location diagram for 100 % Southern Cross Gold owned Sunday Creek Project including the granted exploration permits EL7232 and EL6163 and retention licence RL 6040. GDA94 Z55 grid coordinates (EPSG:28355). Source OpenStreetMap®.

5.0 Accessibility, Climate, Local Resources, Infrastructure and Physiography

Access to the Project is simple, via the Hume Highway from Melbourne, and a network of sealed and gravel roads. A small part is cleared for farming, much is open eucalypt forest of the Mt Disappointment State Forest. The drainage divide between southerly and northerly flowing rivers and creeks occurs just to the south of the Sunday Creek Project; thus all runoff is to the north with water eventually flowing into the Murray River.

Annual rainfall averages around 900mm in the hilly terrain of Sunday Creek. The terrane can be quite steep in parts, with a mixture of farmland and native forest. Stands of mountain ash (Eucalyptus regnans) and messmate stringybark (Eucalyptus obliqua), are on the dividing range to the south of the Project. With reducing elevation, the ash forests give way to open forest of messmate stringybark and narrow-leaf peppermint (Eucalyptus radiata), while the drier, steeper slopes carry broad-leaf peppermint (Eucalyptus dives) and red stringybark (Eucalyptus macrorhyncha). Mountain grey gum (Eucalyptus cypellocarpa) and manna gum (Eucalyptus viminalis) occur on the wetter sites.

The Hume Highway runs through the tenement with numerous sealed and gravel roads giving good access via road. The town of Wandong lies at the southern end, and the small town of Waterford Park within tenement. The area experiences hot dry summers and cool winters; access is year-round.

The Sunday Creek Project has ample areas for water and tailings storage in the various dry valleys as well as sites suitable for mine buildings or processing facilities. Being in a temperate environment water is available and storage facilities could be built subject to government permitting.

It is not known if there is significant ground water that could be utilised for a future mining operation. The majority of the Retention Licence is on freehold land owned entirely by Southern Cross Gold or state owned crown land

6.0 History

The main historical prospect within the Sunday Creek Project is the Clonbinane prospect, a high-level orogenic-style (or epizonal) gold occurrence. Small-scale mining has been undertaken in the Project area since the 1880s continuing through to the early 1900s. Historical production occurred with multiple small shafts and alluvial workings across the SXG permits (Figure 3 & Figure 4). Production of note occurred at the Clonbinane area with total production being reported as 41,000 oz gold at a grade of 33 g/t gold (Leggo and Holdsworth, 2013).

Larger historic workings along the trend from west to east include Christina (70 m vertical), Golden Dyke (181 m vertical), Rising Sun (53 m vertical) and Apollo (112 m vertical). Gold mineralization is hosted within, or proximal to, dykes with mineralization continuing along structures that extend into the sedimentary country rock.

The historic working trend associated with diorite dykes continues to the east-northeast for 11 kilometres until intersecting the Reedy Creek gold trend (not owned by SXG and not the subject of this Technical Report), albeit it is not known whether these dykes are the same continuous trend with some fault offsets, or separate dykes. The historic Reedy Creek gold trend on the eastern side of the Sunday Creek Project area is a dominantly NW striking set of quartz veins with hundreds of small workings that extend over a four-kilometre strike length.

See Table 2 for full ownership timeline.

Geological maps are available from the Geological Survey of Victoria producing geology maps at 1:50,000 scale and government topographical maps are available at 1:25,000 scale. Figure 9.

Underground mine plans are available for a number of historic mines located within the properties (Figure 3 & Figure 4).

Date	Company
1967	Eastern Prospectors PTY Ltd
1982-1983	CRA Exploration Pty Ltd (CRAE)
1986-1988	Ausminde
1993	Ausminde
2003-2005	Reliance Minerals Limited
2005-2006	Agincourt Resources Limited
2007-2012	Beadell Resources Limited
2013-2014	Auminco Mines Limited
2014-2020	Nagambie Resources

Table 2: Tenure ownership prior to Mawson in 2020

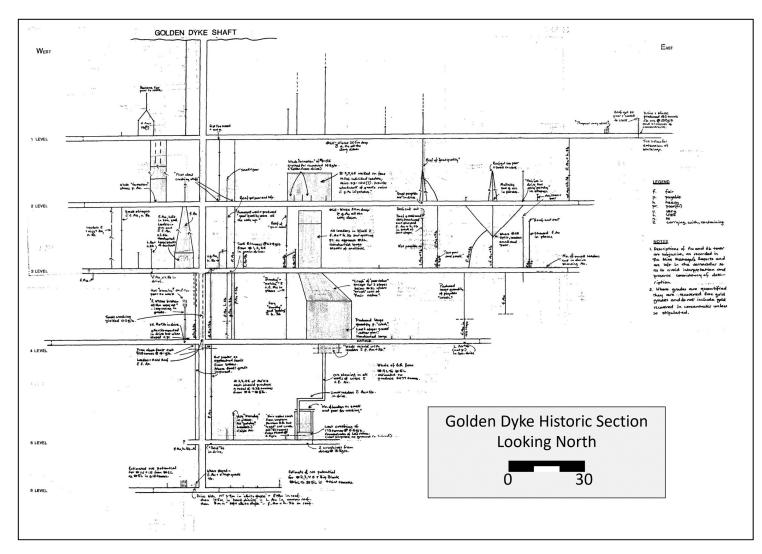


Figure 3: Historic mining Sections of Golden Dyke prospect.

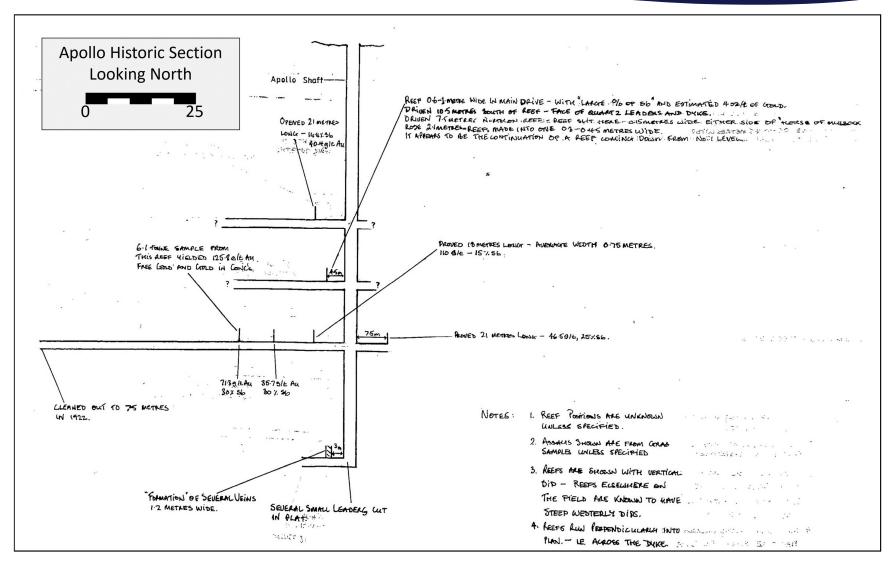


Figure 4: Historic mining Sections of Apollo Prospect.

Modern exploration commenced in 1967 by Eastern Prospectors, comprising ground geophysics surveys and soil, rock chip and trench sampling (for example, Zimmerman, 1967). Five drill holes on the western end of the Clonbinane trend near Christina were completed late in 1967 (Webb, 1968). This work was followed by CRA Exploration who conducted mapping, trenching, soil sampling, auger and rock chip sampling (Paterson, 1982).

Two historical drill campaigns have tested the Clonbinane mineralized system to 40-100 metres vertical depth over an 800 metre strike. In 1986, Ausminde Pty Ltd and Ausminde Holdings Pty Ltd (collectively "Ausminde") were granted mineral tenure at Clonbinane. Ausminde completed soil and rock chip sampling and undertook RC drilling in 1994 (29 RC drill holes totalling 960 metres; Rech, 1994 & Krummei, 1995). Beadell Resources Limited subsequently drilled at Clonbinane in 2008 (30 RC holes with 7 diamond drill tails; Abello et al. 2008). Selected drill results with a 0.5 g/t gold lower cut from Ausminde (CRC) and Beadell's (VCRC) drill programs at Clonbinane included:

- 17 metres at 7.0 g/t gold and 0.8 % antimony from 66 metres (VCRC022),
- 38 metres at 2.8 g/t from 15 metres (VCRC011),
- 27 metres at 3.7 g/t gold and 0.46 % antimony from 3 metres (CRC013),
- 2 metres at 42.5 g/t gold and 1.0 % antimony from 70 metres (VCRC022),
- 10 metres at 7.0 g/t gold from 42 metres (VCRC011), and
- 5 metres at 11.2 g/t gold and 0.78 % antimony from 67 metres (VCRC007).

None of the drill data have been independently verified by the author or Southern Cross Gold, although Southern Cross considers the results to be largely compatible with the company drill results of the last two years (MDDSC001-026).

At the time of purchase of Clonbinane Goldfield Pty Ltd from Nagambie Mining in March 2020, Clonbinane was regarded as open at depth and along strike and considered a high value exploration project with affinity to the Fosterville Mine.

7.0 Geological Setting and Mineralization

The Lachlan Fold Belt of Victoria, Australia hosts one of the giant orogenic goldfields of the world with more than 80 Moz extracted since 1851. The state is now experiencing its third gold boom with the discovery of extremely high-grade gold at Fosterville. Fosterville's Proven and Probable Ore Reserves at the end of 2020 were 1.97 Moz, including 1.79 Moz at an average grade of 15.4 g/t in the Lower Phoenix and Harrier systems (*including 1.25 Moz at an average grade of 30.6 g/t in the Swan Zone*) and 180,000 ounces at an average grade of 5.3 g/t at Robbin's Hill (Agnico Eagle, 2022).

There are two distinct sub-types of orogenic gold mineralization in Victoria (mesozonal and epizonal), formed during different metallogenic/orogenic events: the first recorded from the ~445 Ma Benambran Orogeny, and the second from the ~370-380 Ma Tabberabberan Orogeny occurring within distinct regional geological domains. Most of the gold recovered from the Victorian goldfields has been produced from the older, Benambran-aged mesozonal gold-quartz vein systems, targeted by the historic miners in the Bendigo and Stawell zones. More recently, Fosterville has rewritten the Victorian geological opportunity for epizonal gold deposits, by demonstrating that epizonal systems can develop extremely high-grade, free gold deposits, as well as high-grade Au-Sb lodes.

Epizonal Au-Sb mineralization was formed at shallow crustal levels, during orogenic events, by auriferous fluids with high fluid pressures causing reactivation of existing brittle structures, with multiple vein orientations and breccia development (see recent papers by Vollgger et al., 2020; Voisey et al., 2020; Wilson et al., 2020).

The Victorian goldfields are largely hosted by a sequence of Cambrian to early Devonian turbiditic metasediments (Figure 5), which are openly to tightly folded and typically of low metamorphic grade. Litho-structural zones are defined primarily using the age of the metasediments — key to this discussion are the Bendigo zone (dominated by early Ordovician rocks) and the Melbourne zone (late Ordovician to late Devonian). The age of the gold mineralization ranges from late Ordovician to late Devonian with clusters of gold mineralization associated with three major orogenic events (Benambran, Bindian and Tabberabberan, Figure 6).

The Bendigo and Ballarat vein quartz-gold lodes are regarded as the classic examples of the Victorian mesothermal orogenic style formed during the Benambran and Bindian orogenic events (Earth Resources Victoria, 2022). Victorian mesozonal orogenic goldfields that produced more than 1 million ounces of gold from quartz veins include Bendigo (18 Moz), Stawell (4.0 Moz), Ballarat (2.8 Moz), Walhalla (2.2 Moz), Maldon (2.0 Moz), Woods Point (1.4 Moz) and Clunes (1.3 Moz) (Earth Resources Victoria, 2022). These formed during the Benambran and Bindian orogenic events. Gold formed during the Tabberabberan orogeny is more varied in style and includes the "epizonal" type — shallowerformed high-grade gold-antimony mineralization usually with subtle structural control, although faults are always present.

Significant producers from Tabberrabberan mineralization include the Agnico Eagle owned Fosterville Gold Mine, and the Mandalay Resources owned Costerfield Au-Sb Mine. A key common feature of Tabberabberan mineralization in Victoria is the presence of anomalous levels of antimony, commonly in the form of stibnite (Sb₂S₃), and arsenic in the form of arsenian pyrite or arsenopyrite (FeAsS). Costerfield is a significant producer of antimony, average annual production of ~4,600 tonnes of antimony and 39k oz Au since 2010 (Mandalay Resources 2024 NI 43-101 technical report).

The dominant north-south striking structural fabric is cut by Devonian intrusives, largely granitoids, but also more primitive mafic rocks. Associated with the late Devonian intrusives are coeval volcanics and dyke systems; and although volumetrically less significant, they provide a strong indication of the potential for shallow igneous-driven hydrothermal activity. The apparent spatial relationship of some gold mineralization in the aureoles of late Devonian granites, together with localised epithermal textures and some documented intrusion-related deposits (e.g. Bierlein and McKnight, 2005) support this hypothesis.

Figure 7 shows SXG's two Victorian project areas with respect to major cities in southern and central Victoria. The Sunday Creek Project is the closest to Melbourne, lying approximately 60 km to the north. The Redcastle Project, which is not a subject of this Technical Report, is situated 120 km north-northwest of Melbourne and approximately 20 km northeast of Heathcote and 10 km north of the Costerfield Au-Sb Mine.

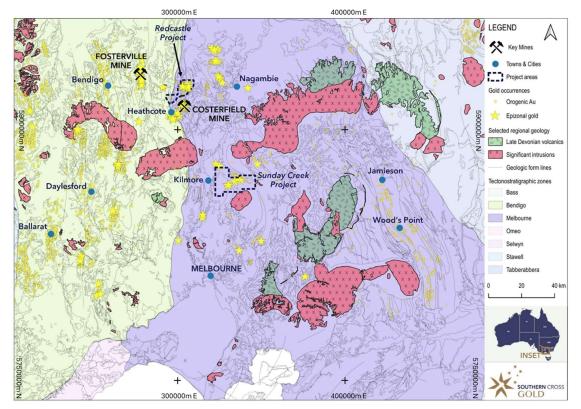


Figure 5. Simplified Victorian geological map showing key tectonostratigraphic zones and locations of key gold mines and gold occurrences. (Open source data from Geological Survey of Victoria; Creative Commons Attribution 4.0 International License.GDA94 Z55 grid coordinates (EPSG:28355)

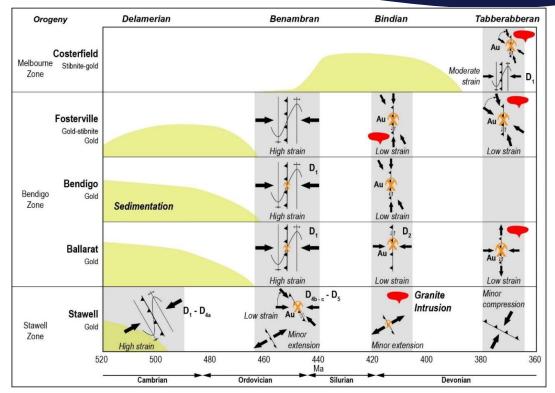


Figure 6. Diagram indicating inferred relationship between sedimentation, structural regime during orogenic events, granite emplacement and gold mineralization (from Wilson et al. 2020).

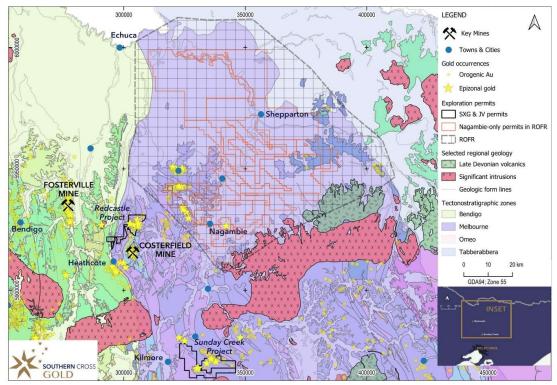


Figure 7. Simplified Victorian geological map centred on Southern Cross Gold project areas (primarily Bendigo and Melbourne zones) with late Devonian intrusives and volcanics. The ROFR and included Nagambie-owned permits are shown with orange borders and the Southern Cross and option and joint venture permits are indicated for the two project areas. Open source data from Geological Survey of Victoria; Creative Commons Attribution 4.0 International License.

The Sunday Creek Project occurs within the Melbourne Zone of the Palaeozoic Lachlan Fold Belt. The Melbourne Formation (Silurian) and the Humevale Siltstone (early Devonian) are the major stratigraphic units with mapped exposures folded and thrust-faulted by the Late Devonian Tabberabberan Orogeny into dominantly SE-striking open to tight folds (Figure 9). The Mount Disappointment granite (late Devonian age 375.3 ± 2.5 Ma and 376.9 ± 2.6 for early crystallisation (Clemens et al., 2022)) is emplaced into this sequence 8 kilometres south-east of the Project. Contact metamorphic effects are not obvious within the Project, but dykes apparently related to the granite are significant in the Project.

Dark grey turbiditic siltstones are the dominant sediment type at Sunday Creek with subordinate fineto medium-grained laminated sandstones (Figure 8). Corals and fossiliferous bands have been intersected in SXG's diamond drilling. Graded beds in the siltstones are rare and where present indicate the sequence is not overturned. The metamorphic grade of the sediments is low (subgreenschist facies). The sequence is described as conformable, and monotonous with a number of marker units (informal members) and subtle gradational changes.

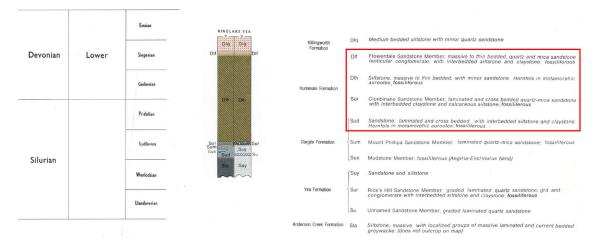


Figure 8: Summary of the stratigraphy, red box outlines units observed in the Sunday Creek Project area to date. Source: Geological Survey of Victoria, 1977. Kinglake. 1 mile to 1 inch, geological map. Department of Mines, Victoria.

Folds are open to tight, with correlation of individual strata across Sunday Creek diamond drill holes confirming this in areas of non-destructive alteration. Emplacement of a multi-phase dyke caused marginal brecciation of the host sediments producing two distinct breccia types. The first breccia type has a quartz-carbonate matrix with angular dyke clasts and the second type has the host sediments as the breccia matrix. Both breccia types are mapped adjacent or within dykes and contain common pale cream to yellow alteration (carbonate and sericite) although adjacent altered and unaltered sediment breccia clasts are common.

The Sunday Creek dyke swarm is a series of intermediate monzodiorite – diorite dykes and breccias that trend near east-west on 080° and dip steeply north and have highly variable textures and compositions. The earliest emplaced aphanitic varieties occur along thin fracture sets. These finegrained dykes locally grade into porphyritic to massive varieties as the thickness of the dykes increases. Typically, multiple dykes, ranging from centimetre scale to ten metres wide, also sills; occur within a sericite-carbonate-silica altered siltstone-sandstone sequence, with complex breccias of dyke and sediments locally occurring. The dyke swarm and breccias comprise a package between 10 to 50 m thick, with a texturally destructive altered sediment horizon of 10 to 60 m thickness surrounding (20 to 110m total thickness of the altered sediments and dyke swarm).

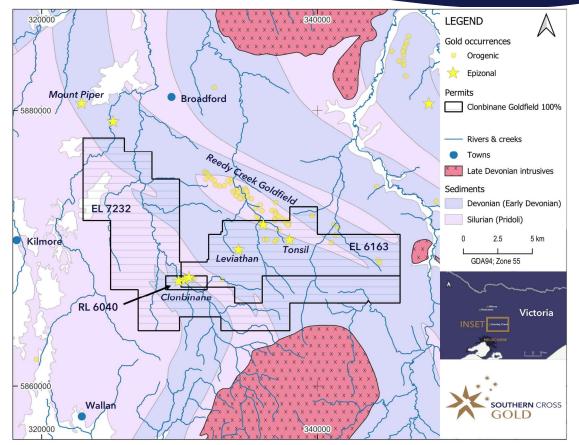


Figure 9. Sunday Creek Project area geological map. Map projection GDA94, zone 55. Open source data from Geological Survey of Victoria; Creative Commons Attribution 4.0 International License.

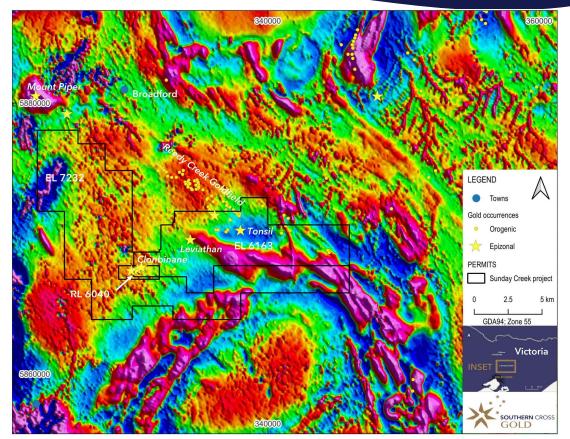


Figure 10. Regional aeromagnetic image (RTP) of Sunday Creek Project area. The ovoid Mt Disappointment Granite is clear to the south of the Project area with its associated external ring of magnetic hornfels broken by NW-striking faults. Map projection GDA94, zone 55. Open source data from Geological Survey of Victoria; Creative Commons Attribution 4.0 International License.

Alteration

Alteration surrounding the mineralization is zoned from distal to proximal (Figure 11).

- Regional chlorite alteration weakly pervades the sediments
- Change in mica composition from phengitic to muscovitic mica approaching mineralization
- Increasing carbonate spotting and cementation of groundmass
- Proximal to the dyke swarm a very intense, texturally destructive alteration of sericitecarbonate-silica "bleaching" of the sediments and dyke swarm. This alteration begins as patchy selective replacement of sediments and increases in intensity until no discernible protolith can be determined.

Pale green fuchsite and albite are common accessory minerals of the alteration assemblage within the dyke.

NI 43-101 Report Sunday Creek Gold-Antimony Project, Victoria, Australia

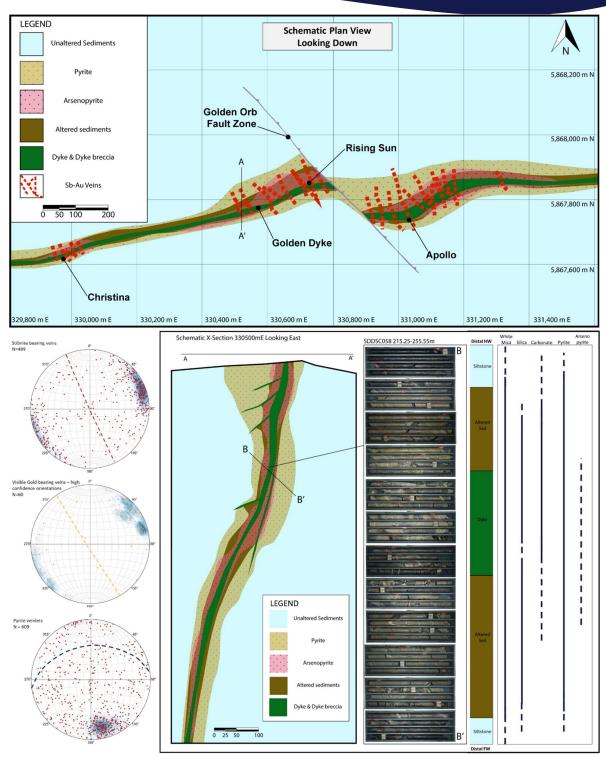


Figure 11: Schematic Plan view and section view of the geology and alteration within the Sunday Creek Project area, with high confidence structural measurements of the mineralization.

Mineralization

Mineralization at Sunday Creek has a clear spatial relationship with the dyke rocks and the enclosing altered sediments. Distally, mineralization is represented by disseminated pyrite in the visually unaltered sediments up to 150 m away from altered sediment and dyke, with increasing frequency and small pyritic veinlets following the dyke swarm trend proximal to veining and visual "bleached" sediments (Figure 11).

Mineralization is dominantly hosted within zones of sub-vertical, brittle, semi-brittle to ductile shear veins and associated extension veins, containing visible gold, quartz, stibnite, occasional fibrous sulphosalts and minor ferroan carbonate infill. The veins are typically striking north-north-westerly with a sub-vertical to steep east/west dip (Stereonets: Figure 11), Subordinate vein sets in other orientations are recorded in Southern Cross drilling and are interpreted to be linkage features between the steep dipping trends. An associated selvedge of disseminated sulphides in the form of arsenian pyrite, pyrite and arsenopyrite are observed within the proximal mineralized zones. The mineralized zones orthogonally crosscut the east-west trending bleached sediments and altered dyke and the zones are typically between 2-10 m wide, 20-100 m in strike and currently defined vertically down to 1.1 km depth. Each of these zones repeats every 10-20m within the Apollo and Rising Sun areas with 50 vein sets of high confidence currently defined to date.

Structure and Controls on mineralization

The primary control on mineralization at Sunday Creek is the rheology contrast of the dyke swarm and altered sediments relative to the unaltered sediments. The alteration has strengthened the rock mass and increased the competency of the units promoting an increase and focus of fracturing and fluid pathways within the altered sediments and dyke lithologies.

Structural analysis of mineralized veins and faults within the Project area suggest whilst a regional NNE-SSW compression was prevalent during mineralization a local extensional regime was developed around the dyke host with a small component of strike-slip movement. This causes a high propensity for steep plunging shoots within the mineralized package associated with geological features:

- The intersection of conjugate extension veins
- The intersection of extension veins with shear veins
- Intersection lineation of the dyke swam and vein sets.
- Slickenlines and slicken fibres

The presence of high levels of stibnite (> percent levels), and a general transition of brittle, semi-brittle and ductile veins with depth is consistent with classic orogenic gold belts around the world showing a continuum of mineralization genesis and potential for focus at depth and presence of higher tenor mineralization in the larger multi-phase veins.

Cataclastic fault zones are common within the mineralized rocks at Sunday Creek. These fault zones both contain and transect the mineralization and are interpreted by SXG to be approximately synchronous with the deposition of gold and antimony with a component of post-mineralization movement (as highlighted by the presence of low temperature clays and illites). Significant dextral strike-slip faults are interpreted along the ENE Clonbinane dyke swarm trend, in particular at Sunday Creek, the Golden Orb fault zone (Plan View: Figure 11) where bedding trends appear to steepen into this fault from both north and south.

8.0 Deposit Types

The Sunday Creek Project is classified as an orogenic gold occurrence, a deposit type that occurs throughout the world and includes some of the richest known gold deposits (Gardner, 2021). Specifically, Sunday Creek would be classed as the subset epizonal orogenic, where gold deposits form in metamorphic belts at shallow crustal levels (<~6 km depth) and/or relatively low temperatures (150-300°C) and typically have a high arsenic and antimony association.

These types of deposit are most common in the western part of the Melbourne Zone and in the eastern edge of the Bendigo Zone, with notable goldfields in Victoria of Fosterville (Current operating mine: Agnico Eagle), Costerfield (Current operating mine: Mandalay Resources), Sunday Creek, Nagambie, and Heathcote.

Most of these deposits are in folded, faulted and regionally metamorphosed (commonly to greenschist – sub-greenschist facies) Ordovician to Devonian turbidites. The dominant sulphides in epizonal orogenic gold deposits are usually arsenopyrite, pyrite and stibnite. The mineralogy of the mineralization changes according to the temperature of gold deposition. Assemblages dominated by arsenopyrite, and pyrite were deposited at higher levels in brittle settings, and with depth more ductile features become present and a transition of higher levels of sulphosalts and visible gold occurrences may dominate.

8.1 DEPOSIT TYPE EXPLORATION STRATEGIES

Exploration strategies for orogenic quartz-vein-hosted gold mineralization deposits involve bedrock and structural mapping, geophysical surveys, and geochemical analysis of soil and rock samples. Target areas are then tested by diamond drill programs.

Regional exploration is typically driven by the identification of first order regional-scale structures and related subsidiary fault-structures, as suggested by geophysical, structural mapping and core logging interpretations. Prospective corridors are drilled on a range of orientations to identify and understand the control on mineralization (termed "control holes" at the Sunday Creek Project) and then hole collars and orientations designed to intersect planar gold-bearing structures at a high angle of intersection.

9.0 Exploration

9.1 GEOLOGICAL MAPPING

Geological mapping has been carried out across the Project with the focus of generating a new geological map and interpretation of the Clonbinane area, encompassing RL006040 and EL006163 and EL007232 utilising the knowledge generated from the main drilling areas to further refine and generate regional targets. The geological mapping programme provided a new interpretation of the geology of part of the Melbourne Zone of Siluro-Devonian sediments in the area surrounding the epizonal monzodiorite and diorite hosted Sunday Creek Au-Sb mineralization with a new interpretation of a fold-and-thrust belt is shown in Figure 12, including individual folds and faults, and additional dyke hosts in the area.

Up to three dyke intrusion trends have been identified from historical workings and outcrop over 12 km of strike on the Project to date (Figure 13). 912 structural and lithological observations were collected over the Project to develop the interpretation shown in Figure 12.

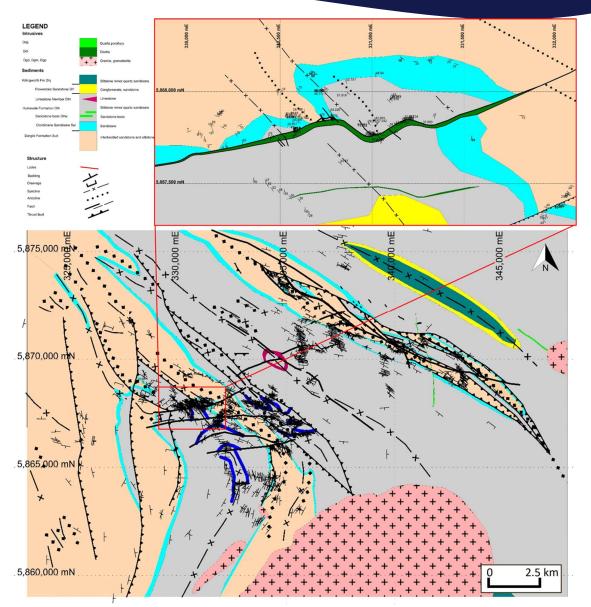


Figure 12: Regional geology interpretation

9.2 GEOCHEMISTRY

Geochemical exploration has been undertaken extensively at the Sunday Creek Property, with classic epizonal pathfinder elements Au-Sb-As utilised to identify areas of interest.

Soil Geochemistry

In February 2021 a regional soil geochemistry program was conducted at Sunday Creek by Mawson Gold. A total of 1,784 samples were collected using handheld methods to a depth of approximately 250 mm or the "B" horizon over a grid with a 25 m spaced traverse north-south and a 125 m spaced traverse east-west. Sampling was consistent with industry standards for the climate and weathering profile, samples near disturbed ground were removed from the analysis to avoid a bias in interpretation.

Samples were first analysed by aqua regia digest ICP-MS for Au only and followed up in 2023 by ME-MS-61LTm a four-acid digestion which is a "near-total" digestion method of HNO₃-HClO₄-HF acid digestion, HCl leach, followed by an ICP-MS finish for super-trace detection limits.

The work aimed at producing a large surface multi-element geochemical dataset and to define broader geochemical anomalies and aid target generation along known mineralized corridors (Figure 13). Clear geochemical anomalies can be identified from a combined trace element additive index using Au, As, Sb and Mn.

Significant anomalism within RL006040 and within EL006163 was observed. Within RL006040 the soils delineated a NE-SW trending area of gold anomalism that corresponds with the interpreted dyke host and around the historic Sunday Creek mineralization. On EL006163 there is a distinct anomaly surrounding the historic Leviathan and Tonstal Mines and other significant anomalism to the east within the Reedy Creek district.

Anomalism related to alteration products identified in the principal component analysis and classic known pathfinders in Victoria can be identified using a combination of the following elements: Au, As, Sb, Mn, Ca, P, Na and Sr.

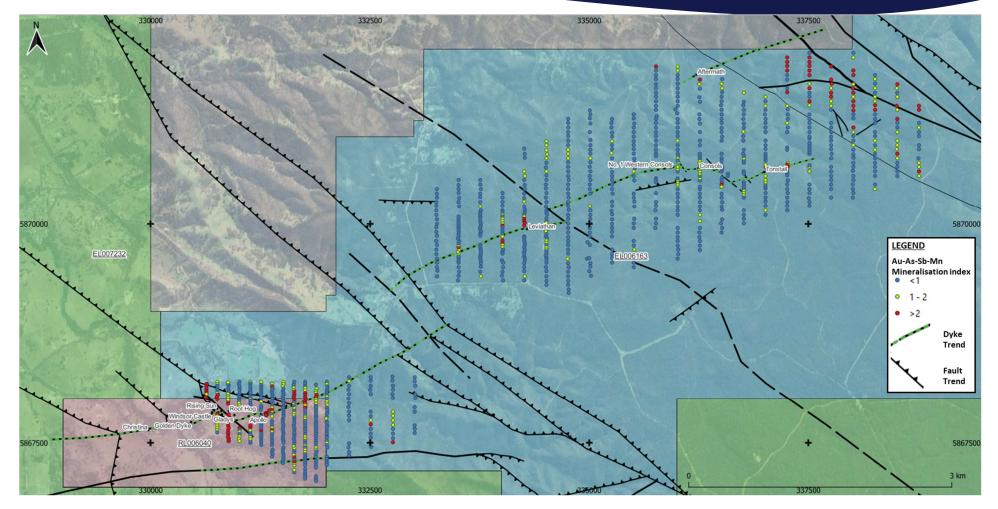


Figure 13: Surface topography and exploration leases overlaid with the acquired geochemical sampling lines.

9.3 TRENCHES

Several shallow trenches were completed by SXG in 2020-2021 to the east of historic workings and previous trenches to better define the structural setting and style presented in soil anomalies and to understand the partially covered outcrop.

Highlights include:

MTSC001 intersected 14m @ 11.50g/t Au and 0.3% Sb including 8.0 m @19.6g/t Au and 0.4% Sb from an iron rich highly altered siltstone with quartz stockwork veining (with possible stibnite, up to 0.6 % Sb). MTSC002 was then placed to cross-cut MTSC001, where the best veining was intersected. This trench returned 2m @ 4.9g/t Au and 0.2% Sb (Figure 14). Both trenches were completed away from historic workings around the Apollo East prospect and are considered representative of in-situ mineralization in the oxidised portion of the deposit.

Figure 14: A section of the shallow trench dug during the 2021 period

9.4 LIDAR

Mawson Gold Ltd engaged AAM Pty Ltd to conduct a LiDAR survey over the Sunday Creek Property during September-October 2020 (Figure 15). The survey was flown with a fixed wing aircraft and an Optech Galaxy LiDAR Sensor. The LiDAR was acquired at an altitude of approximately 1,100m AGL (above ground level) with an average 12-15 ppm (points per metre) density. Ground survey was also undertaken to tie the LiDAR data to known survey monuments, resulting in vertical and horizontal accuracies of +-10cm & +-30cm respectively at the 68% confidence interval. In July 2024 an additional 126km² area of the southern edge and surrounds of the Sunday Creek Project was acquired

The LiDAR point cloud data was then processed with proprietary algorithms to classify ground vs non ground points. A bare earth ground model was subsequently interpolated, and then tiled in 1km square geotiff images for ease of handling. The source 1km tile point clouds were also supplied. The derived ground model was used to orthorectify existing 20 cm RGB colour photography over the Project area.

Over 473 areas of historic workings have been identified on the Sunday Creek Project to date. Consistent trends of historical workings show a north north-westerly trend to the individual workings

within an overall east-west trend (Figure 16, Figure 17). These workings were then subsequently followed up with surface mapping.

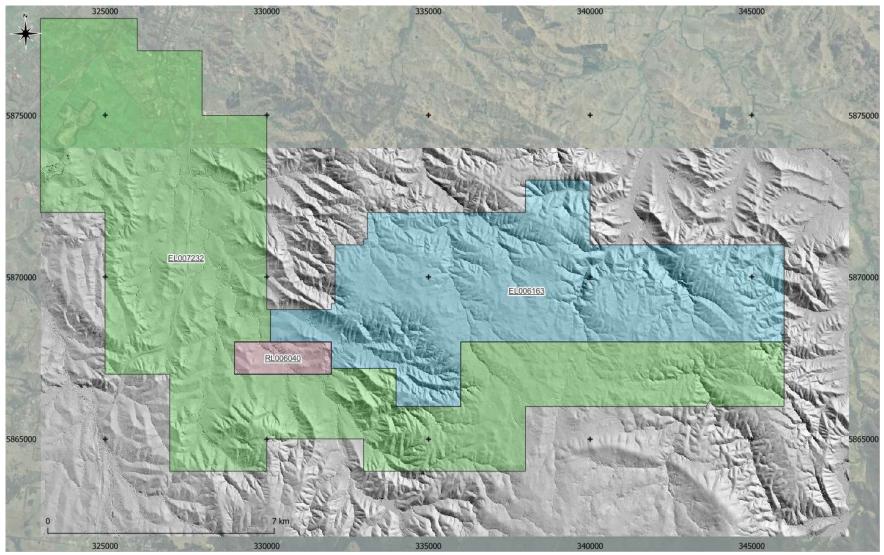


Figure 15: Location of the LiDAR survey, and Sunday Creek tenure. GDA94 Z55.

NI 43-101 Report Sunday Creek Gold-Antimony Project, Victoria, Australia

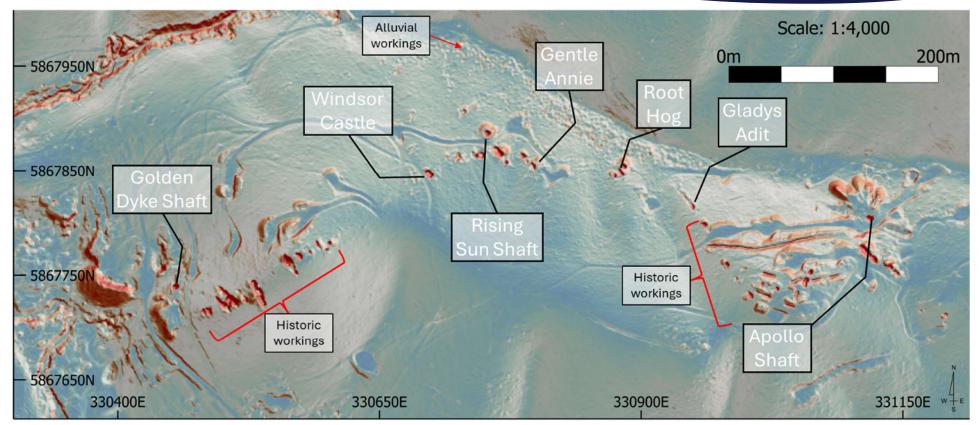


Figure 16: Hillshaded LiDAR showing historic workings in the main area of Sunday Creek of RL006040.

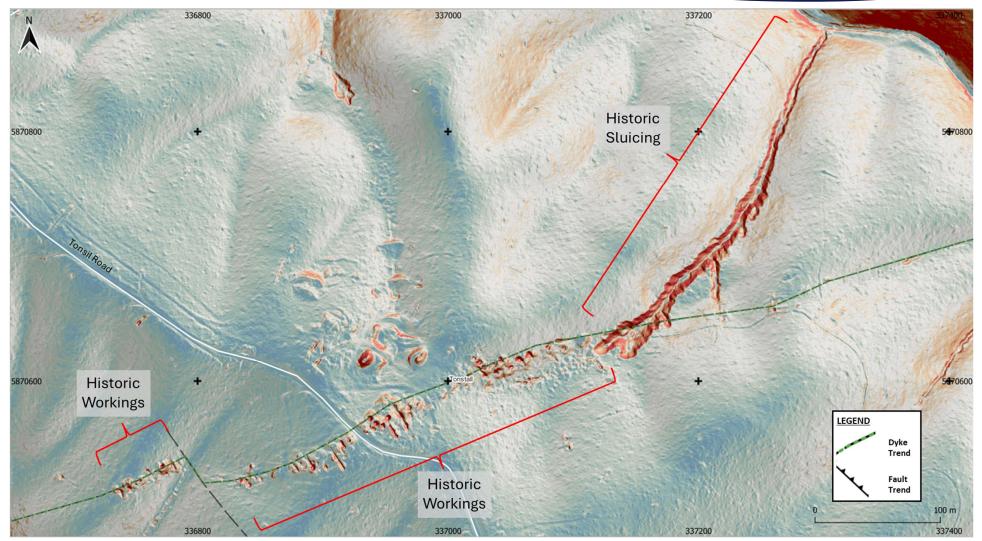


Figure 17: Hillshaded LiDAR showing regional historic workings of EL006163.

9.5 GEOPHYSICS

Several programs of geophysical surveys were completed at the Sunday Creek Property.

Induced Polarisation (Offset dipole-dipole IP)

To explore for more significant sulphide alteration halos at depth, an offset dipole-dipole IP survey was commissioned (Figure 18 & Figure 19). The survey consisted of 8 transmitter lines spaced 200 m apart, each with 3 receiver lines spaced 100 m apart. One receiver line was positioned along the transmitter line and the other 2 receiver lines were 100 m each side, resulting in offset receiver lines being used by 2 transmitter lines for a total of 17 receiver lines.

Fender Geophysics was contracted to acquire the data. Time domain measurements were made using a standard 2 seconds on - 2 seconds off signal. Four Scintrex IPR-12 receivers where used, two on each line, with two lines being recorded simultaneously.

Data was inverted using Res3DIP by Loke. Inversion results were then masked to the survey boundary for viewing and isosurface generation using Spatial Integration.

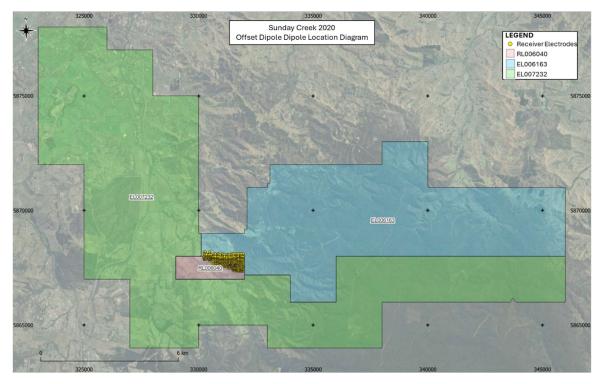
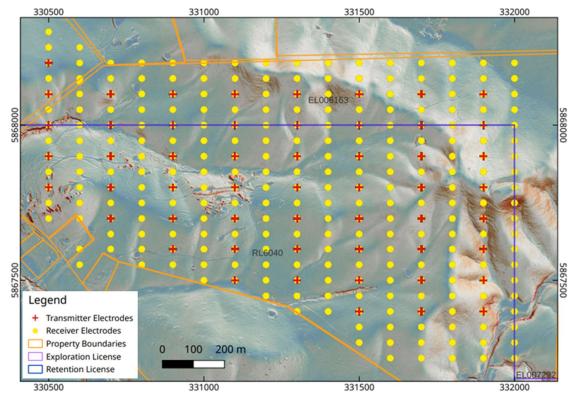



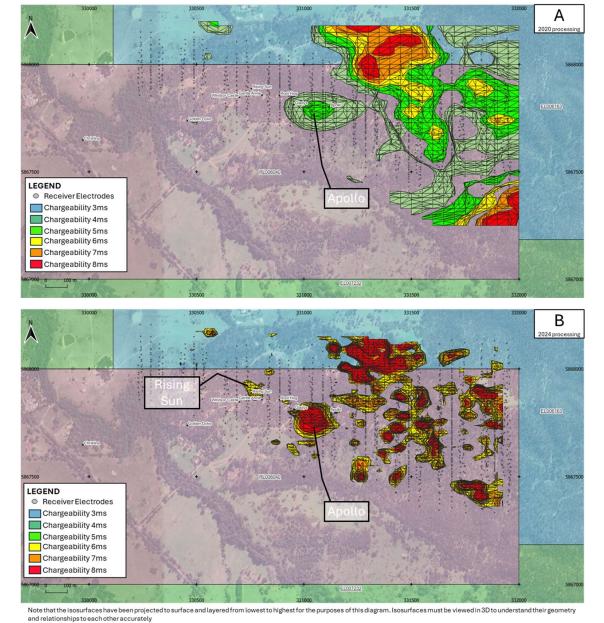
Figure 18: Location Map of the Offset Dipole-Dipole Station Survey.

Sunday Creek Offset Dipole Dipole Station Locations

Figure 19: Detailed Location Map of the Offset Dipole-Dipole Station Locations.

In May 2024 the offset dipole-dipole IP survey acquired in 2020 was reprocessed and re-inverted to take advantage of the latest technology from University of British Colombia (UBC). Reprocessing took the form of:

- Separation of resistivity and chargeability data to maximise the number of valid resistivity readings.
- Reading rejection based on contractor flags and standard deviation separately for resistivity and chargeability.
- Reading rejection based on full decay fitting producing valid exponents for the chargeability data.


The data was inverted using UBC's Simpeg library. An octree mesh was employed so that high resolution cells could be used near surface, with the cell size expanding appropriately at depth where less spatial resolution is required. There was a lot of experimentation with parameters to optimise the inversion in areas where the geology and alteration is well known, thereby providing higher confidence in areas away from the current focus of exploration. The result was tighter anomalies that better reflect known geology and better resolved anomalies for future exploration (Figure 20b).

Post-processing of the results was improved by clipping the inverted mesh to a convex hull derived from the 3D pseudo-locations of the original readings, with a small expansion buffer. This eliminates inversion results at the margins of the survey where the sensitivity is low.

There is a subtle, but distinct, chargeability high of 5ms in a <=3 ms background over a 200 m diameter around the Apollo mineralization. This likely reflects the disseminated pyrite observed in drilling on a near 1:1 correlation with modelled sulphide presence (Figure 20a), the refined processing completed in 2024 highlights this known area much more clearly (chargeability high of 8 ms) as well as highlight the top of the Rising Sun system (Figure 20b). Known historic occurrences are not highlighted to the west as the survey did not extend sufficiently to extend to depth in this area.

A much larger and potentially more significant chargeability anomaly of 8 ms is seen crossing the NE quadrant of the survey. The geometry suggests 400 m long linear chargeable zones striking NE, within a NW trending envelope that extends past the survey boundaries. The main chargeability high in the north correlates with quartz stockwork veining observed on a ridge and an Au-As-Sb soil anomaly. A potentially higher amplitude chargeability zone is located in the SE corner of the survey and would extend past the survey limits. This is also located on a NE trending valley with a probable structural control. No drilling has been completed on this anomaly to date.

Inversion shows a subtle variation in resistivity. There is a general correlation with the NW trending chargeability envelope boundary, likely reflecting a weathering process of the alteration and mineralization in the area producing clays.

Sunday Creek Offset Dipole Dipole Inverted Chargeability Isosurfaces

Figure 20: Offset Dipole Dipole Inverted Chargeability Isosurfaces. A original 2020 processing, B 2024 reprocessing

Ground Magnetics

The main project area was covered by ground magnetics with 20 m line spacing and 5 Hz sub-metre station spacing (Figure 21). Lines were oriented north-south as a compromise to cross the NW and NE oriented envelope of underground workings.

Fender Geophysics was contracted to acquire the data. Both magnetometers were Gem Systems Overhauser units. The mobile unit was cycled at 5 Hz while the base station was cycled at 1 Hz. The crew consisted of 2 people with 1 person navigating the line using a GPS ~20 m ahead of the operator. Standard base station removal was applied to the data. Fences were masked-out and line leveling applied to the grid and image products.

Sunday Creek Ground Magnetics Location Diagram

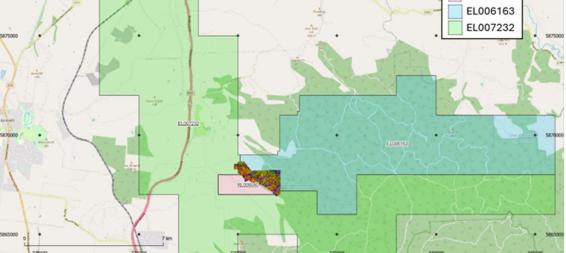


Figure 21: Location of the Ground Magnetics Survey

An image of the ground magnetics is presented in Figure 22.

Linear magnetics highs associated with drainage dominate the image. All are associated with valleys, but not all valleys are magnetic. Many magnetic highs/valleys are linear and NE oriented, parallel to the Golden Dyke line of workings. This suggests that drainage is controlled by the same structures as mineralization and raises the question whether the presence of the magnetic high is related to mineralization within the structure.

More subtle NE and NW trending structures can be observed away from drainage and correlate with the Golden Dyke and Apollo mineral trends. These features are difficult to resolve even with this high-resolution data.

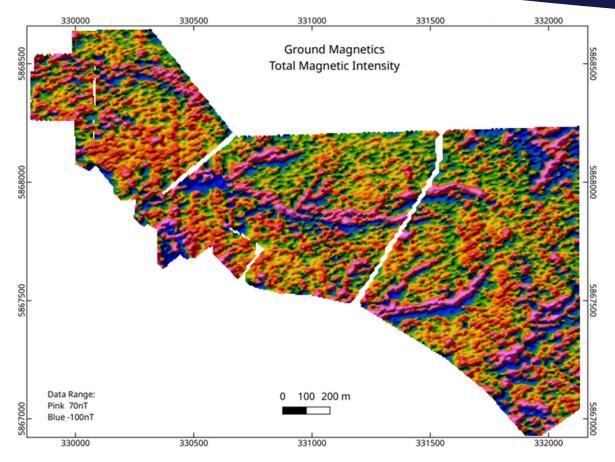


Figure 22: Ground Magnetics Survey - Total Magnetic Intensity

10.0 Drilling

As of 15th July 2024, 148 drill holes for 61,570 m have been drilled by SXG at Sunday Creek since late 2020. This includes 10 holes for 439 m from Sunday Creek were drillholes abandoned due to deviation or hole conditions. 14 drillholes for 2,383 m have been drilled outside of the main Sunday Creek drill area. A total of 64 historic drill holes for 5,599 m were completed from the late 1960s to 2008.

The Project now contains a total of forty- three (43) >100 g/t AuEq x m and forty-nine (49) >50 to 100 g/t AuEq x m drill holes by applying a 2 m @ 1 g/t AuEq lower cut.

A summary of drilling completed by Mawson and SXG from 2020 to 2024 has been outlined in Table 3, location plan maps and longitudinal section, shown in Figure 23 & Figure 24.

The true thickness of the mineralised intervals reported individually are as yet unknown, but are are interpreted to be approximately 40% to 70% of the sampled downhole thickness for reported holes across the Project.

All relevant collar details and sample results at a 2 m @ 1 g/t AuEq lower cut are in Appendix 1: Drillhole Information.

<u>Year</u>	Company	Number of Drillholes	<u>Diamond Core (m)</u>
2020	Mawson	10	1,384
2021	Mawson	18	5,141
2022	Mawson / Southern Cross Gold	34	10,750
2023	Southern Cross Gold	59	28,215
2024*	Southern Cross Gold	27	16,080
	Total	148	61,570

Table 3: Drill Hole Summary of drillholes at the main Sunday Creek area

* As of the 15th July 2024

Drilling at the Sunday Creek Project is undertaken in line with industry best practices including:

- Drilling by reputable drilling contractors, with modern drilling equipment and exceptional safety records.
- Diamond drilling is used extensively to provide detailed structural information and enable downhole navigation/wedging when required.
- The accurate location of Sunday Creek drill hole collars by differential GPS surveying methods, by external Surveyors.
- Measurement of downhole surveys at a maximum of 30 m intervals. Downhole surveying is conducted with a combination of single shot and multi-shot survey tools and gyroscopes.
- Transporting of diamond core in stacked core trays and secured in a dedicated facility.

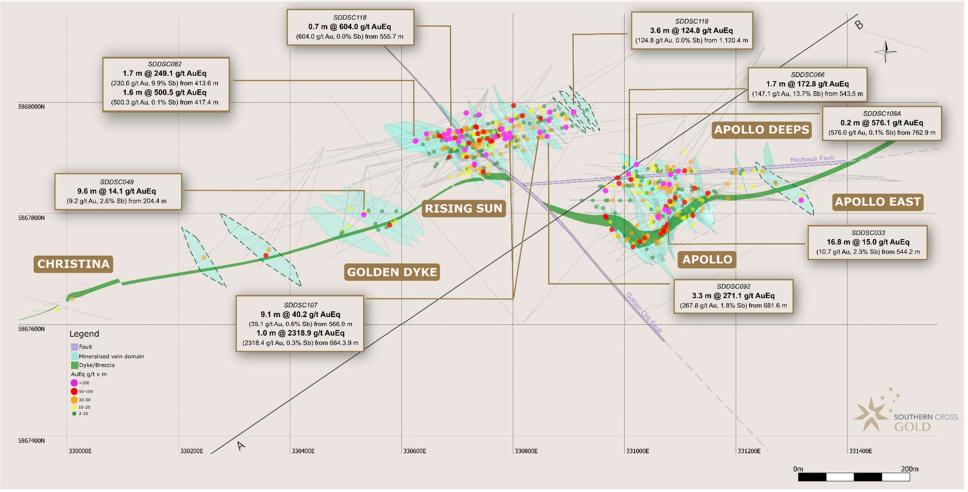


Figure 23: Sunday Creek plan view showing selected highlight results from diamond drilling.

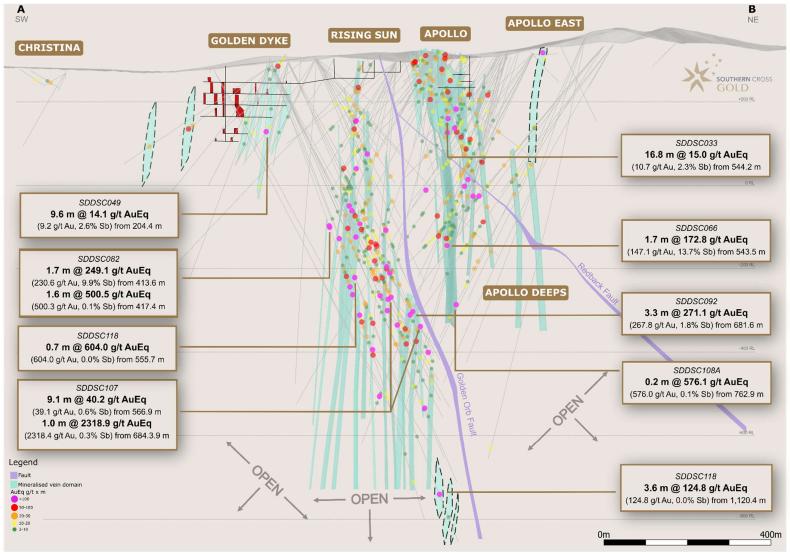


Figure 24: Sunday creek longitudinal section showing selected highlight results from diamond drilling.

Au Equivalent

SXG reports gold equivalent values (AuEq) which is calculated using: Mandalay Resources 2023 Costerfield Operation production costs, a gold price of US\$1,900/oz and an antimony price of US\$12,000/t and a recovery of 94% for Au and 89% for Sb. Grade is expressed as AuEq to allow for the inclusion and expression of the secondary metal (Sb) in terms of the primary metal (Au). AuEq is calculated using the formula AuEq= Au + (Sb × 1.88) where Sb is expressed as a percentage, and Au is in grams per tonne.

All results are reported at a 2m @ 1 g/t AuEq lower cut-off.

2020 Drilling

Drilling from the 18th of August 2020 to the 31st of December 2020 mainly consisted of initial scoping drilling around the historic Apollo mine and Golden Dyke mine. The deepest hole drilled during the period was to 143 m vertically below surface. 10 drillholes were completed for a total of 1,384m.

The top 3 significant intercepts of 2020 were:

- 1. MDDSC010: 7.0m @ 6.2 g/t AuEq (6.0 g/t Au, 0.1% Sb) from 72.4m (Apollo)
- 2. MDDSC010: 2.8m @ 14.7 g/t AuEq (11.9 g/t Au, 1.8% Sb) from 98.5m (Apollo)
- 3. MDDSC008: 0.7m @ 29.4 g/t AuEq (21.5 g/t Au, 5.0% Sb) from 67.7m (Apollo)

2021 Drilling

Drilling for the 2021 calendar year focused on extending mineralization under the historic Apollo mine. Several scoping drillholes were completed under the historic Golden Dyke and Rising Sun Mines with the aim of delineating the E-W dyke and alteration host. The deepest hole drilled during the period was to 490 m vertically below surface under the Apollo area. 19 drillholes were completed for a total of 5,141m.

2021 was the first year to intersect individual Au assays greater than 100 g/t Au.

The top 3 significant intercepts of 2021 were:

- 1. MDDSC025: 11.2m @ 20.4 g/t AuEq (14.4 g/t Au, 3.9% Sb) from 362.5m (Apollo)
- 2. MDDSC021: 13.1m @ 10.0 g/t AuEq (7.7 g/t Au, 1.5% Sb) from 274.7m (Rising Sun)
- 3. MDDSC012: 9.4m @ 7.5 g/t AuEq (5.6 g/t Au, 1.2% Sb) from 204.0m (Apollo)

2022 Drilling

Drilling for the 2022 calendar year continued to expand the mineralization footprint around the Apollo and Rising Sun areas, several scoping holes were completed under the historic Golden Dyke Mine and to the east of the historic Apollo Mine. The deepest hole drilled during the period was to 830 m vertically below surface under the Rising Sun area. 34 drillholes were completed for a total of 10,750m.

2022 drillhole results included 8 individual Au assays greater than 100 g/t Au.

The top 3 significant intercepts of 2022 were:

- 1. SDDSC046: 14.3m @ 24.6 g/t AuEq (20.5 g/t Au, 2.6% Sb) from 187.5m (Rising Sun)
- 2. SDDSC033: 16.8m @ 14.3 g/t AuEq (10.7 g/t Au, 2.3% Sb) from 180.6m (Apollo)
- 3. SDDSC050: 3.9m @ 45.2 g/t AuEq (33.2 g/t Au, 7.6% Sb) from 620.0m (Rising Sun)

2023 Drilling

Drilling for the 2023 calendar year successfully expanded the mineralization footprint between the historic Golden Dyke mine and the Christina Mine and expanded the mineralization footprint of Rising Sun and Apollo areas to depth. The deepest hole drilled during the period was to 1100 m vertically below surface under the Rising Sun area. 58 drillholes were completed for a total of 28,215m.

2023 drillhole results included 28 individual Au assays greater than 100 g/t Au and 6 individual Au assays greater than 1,000 g/t Au. The highest-grade individual Au assay drilled to date on the Project of: SDDSC107: 0.3 m @ 7330.0 g/t Au from 684.7 m.

The top 3 significant intercepts of 2023 were:

- 1. SDDSC077b: 3.6m @ 393.2 g/t AuEq (391.9 g/t Au, 0.8% Sb) from 737.1m (Rising Sun)
- 2. SDDSC091: 20.0m @ 63.6 g/t AuEq (62.7 g/t Au, 0.5% Sb) from 430.0m (Rising Sun)
- 3. SDDSC082: 1.6m @ 500.5 g/t AuEq (500.3 g/t Au, 0.1% Sb) from 417.4m (Rising Sun)

2024 Drilling

Drilling from the 1st of January 2024 to the 15th of July 2024 continued to expand the Rising Sun mineralization to depth and increase the footprint of the system below the Historic Golden Dyke and Christina workings. As of the 15th of July, 16,080 m had been drilled.

The top 3 significant intercepts of 2024 were:

- 1. SDDSC118: 3.6m @ 124.8 g/t AuEq (124.8 g/t Au, 0.0% Sb) from 1,120.4m (Rising Sun)
- 2. SDDSC118: 0.7m @ 604.0 g/t AuEq (604.0 g/t Au, 0.0% Sb) from 555.7m (Rising Sun)
- 3. SDDSC113: 0.9m @ 332.9 g/t AuEq (327.7 g/t Au, 2.8% Sb) from 702.4m (Rising Sun)

At time of the report there were 5 diamond drill rigs operating on the Project with a 6th scheduled to arrive in Q4 of 2024.

Drilling Methods

To ensure consistent results and quality of drilling, Starwest Drilling Pty Ltd was selected as the preferred drilling services supplier in 2020 and has been operating on site since. Oriented diamond drilling has been completed predominantly using an LM90 drill rig in HQ2 or NQ2 sized diamond drill holes. Data collected from these drill holes has provided both structural and detailed grade information. Sample quality and recovery is high with 98% core recovery on average across the Sunday Creek Project.

Downhole Surveys

All drill holes completed by SXG were downhole surveyed by either electronic single-shot, REFLEX EZ-TRAC multi-shot or north-seeking gyro or a combination. During drilling, surveys are completed at a maximum of 30m intervals, with multi-shot surveys completed at hole completion or upon request by geologists at 3m intervals unless ground conditions or magnetic interference is unsuitable. If a wedge hole has been completed or magnetic interference is unsuitable, North seeking continuous gyro tools are used instead at 3m intervals.

Interpretation of Drilling Results

Drilling results are interpreted on paper cross sections or plan sections, which are then scanned and geo-referenced in the mine planning software package Leapfrog Geo. The scanned sections are then

used to generate wireframes (Figure 25). Mappable units have been represented by various colours, while faults and mineralized lodes have been marked with heavy black lines or red and pink lines.

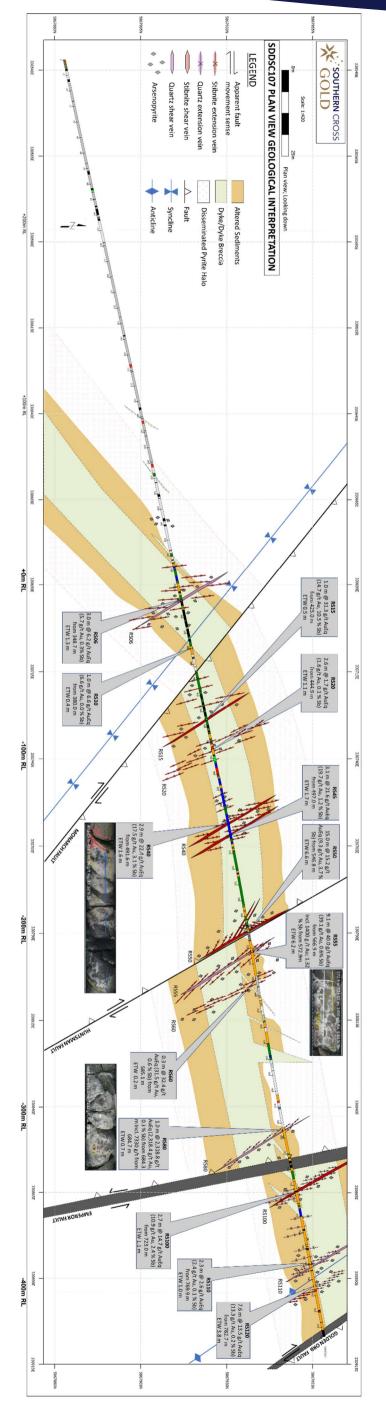


Figure 25: Interpreted inclined plan section of SDDSC107 48

11.0 Sample Preparation, Analyses and Security

The sample preparation and analysis processes detailed in this section of the Technical Report have been in place since the commencement of drilling and are considered by the QP to be adequate for use in future estimations of a Mineral Resource.

11.1 DIAMOND CORE SAMPLING

The mineralization style at the Sunday Creek is well-understood and the geological controls on mineralization established. Sampling intervals were based on geological characteristics and marked on the diamond drill core by SXG geologists. Mineralization was always clearly visible and therefore, systematic sampling of complete drill holes was not required. The general rules that were followed in the selection of sample intervals are:

- All stibnite-bearing, and gold-bearing veins were sampled,
- Intersections of stockwork veins, laminated quartz veins or massive quartz veins were routinely sampled,
- Sulphide bearing sediments and intrusives were routinely sampled,
- Fault gouge zones were sampled at the discretion of the geologist.
- Waste samples ("lead-ins" & "lead-outs") were collected from either side of the mineralized intervals in order to determine the grade of the waste material immediately adjacent to the mineralization. These waste samples ranged from 0.3 m to 1.3 m in downhole length,
- Diamond core sampling intervals were standardised wherever possible and ranged from 10 cm to 1.3 m in length. The average sample length for drill core samples within the Sunday Creek drilling program was approximately 0.8 m.

An SXG field technician undertook the sampling of the diamond drill core. To obtain consistent samples for analysis and retention, the diamond drill core was cut perpendicular to the core axis at the downhole sampling points and then cut in half lengthways with an Almonte automated diamond saw. In response to the visible gold, or high levels (>1% stibnite) in drill core additional QAQC measures are implemented.

11.2 SAMPLE PREPARATION

The following sample preparation activities are undertaken by SXG staff for diamond drill core samples.

- Sample information and characteristics were measured, logged, and recorded in the MxDeposit[™] database and a unique sample ID assigned,
- Sample material was placed into a calico bag previously marked with the unique sample ID,
- Calico bags were loaded into polyweave bags such that the bags weighed less than 10 kg,
- An assay submission sheet was generated and emailed to On Site Laboratory Services Pty Ltd (On Site)
- Polyweave bags containing samples were sealed with a plastic ziptie and transported to OnSite in Bendigo via private courier or SXG staff.

The following sample preparation activities were undertaken by On Site staff:

• Samples were received and checked for labelling, missing samples etc. against the submission sheet,

- If the sample batch matched the submission sheet, sample metadata was entered in the On Site's Laboratory Information Management System (LIMS). In the event that discrepancies were noted, Southern Cross Gold was contacted by On Site to resolve the discrepancy prior to further work commencing. Records of all discrepancies and corrective actions taken are recorded by the Southern Cross Gold staff,
- A job number was assigned, and worksheets and sample bags prepared,
- Samples were placed in an oven and dried overnight at 106°C,
- Samples were weighed and recorded,
- The entire dried sample was crushed using a Rocklabs Smart Boyd Crusher RSD Combo¹ with a jaw closed side setting of 2mm,
- If the dried sample weight was less than 3 kg, the entire sample was retained for pulverisation. If the dried sample weight was greater than 3kg, the sample was spilt to 3kg using the rotary splitter that is incorporated in the Boyd crusher,
- Rejects from greater than 3 kg splits were retained as coarse rejects in labelled calico bags and returned to SXG,
- The 3kg sample was then pulverized in an Essa[®] LM5 Pulverising Mill² to 90% passing 75μm,
- The 3kg pulverised samples were then subsampled to take a 200g split for assay by a manual scooping procedure across the full width and depth of the mill bowl and loaded sequentially into labelled pulp packets,
- For every 21 primary samples, two samples are randomly selected by the Laboratory Information Management System (LIMS), and a duplicate 200g split was taken, loaded into labelled pulp packets, and submitted for analysis using the same analytical procedure as the primary sample,
- The remaining pulp was returned to its sample bag and then returned to Southern Cross Gold for retention following the completion of assay.

¹ https://scottautomation.com/assets/Sectors/Mining/Resources/Smart-BOYD-RSD-Brochure-English.pdf

² https://www.flsmidth.com/-/media/brochures/brochures-products/sampling-preparation-andanalysis/essa-lm5-pulverising-mill.pdf

11.3 SAMPLING METHOD AND APPROACH

Routine assaying of the diamond drill core was completed by On Site in Bendigo, who is independent of SXG and whose analytical and preparation methods hold current ISO/IEC 17025 accreditation.

SXG dispatched samples to On Site after which On Site's assay laboratory personnel completed sample preparation and chemical analysis. Results were returned to Southern Cross Gold staff, who validated and loaded the assay data into the relevant databases.

ALS Global South Australia, SGS Townsville have been used to verify the accuracy of assays completed by On Site through the completion of quarterly umpire check analyses of selected samples (See Section: 11.5 Umpire Check Assay Program – Pulp Samples)

Sample Analysis

Diamond drill core samples were routinely assayed by On Site for gold, antimony, silver, arsenic, bismuth, copper, iron, potassium, magnesium, manganese, molybdenum, nickel, lead, sulphur, vanadium and zinc.

Gold Analysis

Gold grades were determined by Fire Assay (FA) with an Atomic Absorption Spectroscopy (AAS) finish.

A campaign of Screen Fire Assays (SFA) was completed throughout 2023-2024 in response to an observed increase in visible gold.

The percentage of sample passing < 75μ m was checked as part of the screen fire assay campaign. A mean of 88.1% was achieved (Table 4) which is within the target 80% passing < 75μ m.

	Percentage Passing 75µm
mean	88.1%
median	91.5%
SD	10.3%
Min	58.6%
Max	99.8%

Table 4: Statistics for percentage passing a 75µm grind size; target is 80%

SFA analysis was completed at On Site using the half core sample mass and 75 μ m meshes. The greater than 75 μ m was fired to extinction and two samples taken from less than 75 μ m component. Homogenisation of the less than 75 μ m sample component (N=87, mean of 296.6g/t Au) was excellent with an observed correlation coefficient of 0.9933.

In total, 87 sample pairs were completed by an initial FA and base metal report, before SFA was completed on the remainder. The relationship shown in Figure 26 demonstrated the strong agreement between the two sample sets. It was interpreted by SXG and the QP from this relationship that both FA and SFA were suitable for future resource estimation of the Sunday Creek mineralization.

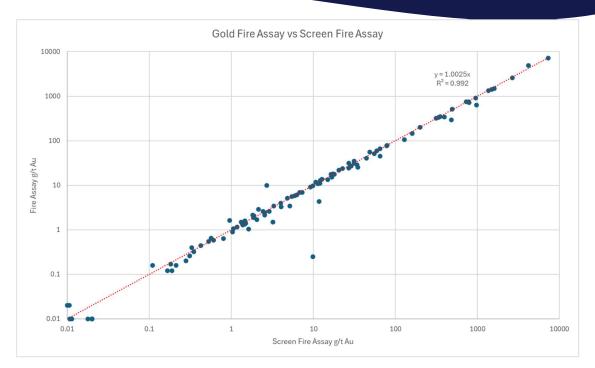


Figure 26: Analysis for gold via Fire Assay or Screen Fire Assay, illustrating a comparison of 115 pairs on a logarithmic scale.

Antimony Analysis

Antimony concentrations were determined using an aqua regia based acid digest with an ICPOES finish at low-detection levels, and with an AAS finish at high antimony levels (>0.5% Sb).

Multielement Analysis

Silver, arsenic, bismuth, copper, iron, potassium, magnesium, manganese, molybdenum, nickel, lead, sulphur, vanadium and zinc were prepared as above with aqua regia digestion and an AAS or ICP-OES finish.

Laboratory Reviews

SXG personnel have conducted periodic visits to the On Site facility in Bendigo and met regularly with the laboratory managers to review laboratory performance. Tours of the laboratory were normally completed in the presence of On Site's Laboratory Manager, Mr Wendell Goyne. Notes and minutes from laboratory visits and meetings with laboratory staff have been maintained as records on the Southern Cross Gold server.

11.4 ASSAY QUALITY ASSURANCE/QUALITY CONTROL

The following sections relate to the Quality Assurance/ Quality Control (QAQC) samples submitted and returned to Southern Cross Gold from 1st January 2023 to 31st December 2024.

Antimony analysis precipitation issues

The geochemical analysis of antimony may suffer from two key issues:

- Precipitation issues as an antimony-chloride in the presence of hydrochloric acid (HCl) that is used in an aqua regia and four-acid digestion (4AD; Hu and Qi, 2014),

- Volatilisation as an antimony fluoride in 4AD (Hu and Qi, 2014). The precipitation issue of antimony chloride may extend to fusion digestion methods if the fusion bead is dissolved by hydrochloric acid (HCl) for nebulisation in ICP analysis, but with the reduced acid dilution factors to dissolve the bead relative to 4AD, and active observation for evidence of precipitation this issue can be managed.

The routine lab, On Site Laboratory, have considerable experience in the analysis of high-grade antimony samples typical of the Sunday Creek Property and other regional operations, and it follows a proprietary assaying method that has been developed to report ore-grade level antimony values. On Site uses an Aqua Regia style preparation to negate analytical technique issues encountered with antimony chloride precipitation and is finished with an ICP-OES (low-level detection limit) or an AAS finish (high-level detection limit).

CRM Results

In total, 895 commercial CRMs were inserted into dispatches during 2023-2024 to monitor the performance of assay quality and accuracy (Table 5).

The homogenisation, analysis and certification of these CRMs was performed and/or coordinated by OREAS and Geostats Pty Ltd (Table 5).

CRM name Material	<u>Source</u>	<u>Certifying</u> laboratory	<u>Au method 1</u>	<u>Sb method 1</u>
GSB-10	Commercial	Geostats	-	AAS
GSB-11	Commercial	Geostats	-	AAS
OREAS230	Commercial	OREAS	Fire assay	-
OREAS232	Commercial	OREAS	Fire assay	AR / ICP
OREAS232b	Commercial	OREAS	Fire assay	AR / ICP
OREAS238	Commercial	OREAS	Fire assay	AR / ICP
OREAS238b	Commercial	OREAS	Fire assay	AR / ICP
OREAS245	Commercial	OREAS	Fire assay	4a / ICP-OES
OREAS290	Commercial	OREAS	Fire assay	AR / ICP
OREAS291	Commercial	OREAS	Fire assay	AR / 4a / ICP
Note: Sh for OBEAS CR	Ms denoted as '-' ar	e below the routine analysis	sensitivity and not use	for quality control

Table 5: Certified reference materials and certified assay methods

' are below the routine analysis sensitivity and not used for quality control.

At least one CRM was submitted with every batch of diamond core samples and typically at a minimum rate of 1 standard per 25 samples, and 1 standard per 10 estimated high-grade samples.

An assay result for a CRM was considered acceptable when the returned assay fell within three standard deviations (SD) of the CRM certification grade. Outside this range, the CRM assay was considered to have failed and all significant mineralized samples within the batch were re-assayed, where significant grades were defined as mineralized samples that may have a material-impact in future resource estimates. All actions or outcomes were recorded as comments in the QAQC register.

The assay results for the reporting period are presented in Table 6 for gold by FA and Table 7 for antimony.

Table 6: Routine certified reference material results for gold by fire assay

1	CRM – Au	Number	Mean Au (FA)	% Mean	Au (FA) std.	% Rel std.	Au (FA) cert.	Au (FA) cert.	>3
	(FA)	submitted	value g/t	Bias	dev.	dev.	Value g/t	std. dev.	SD

OREAS230	177	0.32	-5.04	0.045	14.06	0.337	0.013	4
OREAS232	58	0.88	-2.44	0.145	16.48	0.902	0.023	3
OREAS232b	103	0.92	-2.75	0.06	6.52	0.946	0.037	1
OREAS238	33	3	-0.99	0.04	1.33	3.03	0.08	0
OREAS238b	65	3.04	-1.30	0.073	2.40	3.08	0.085	1
OREAS245	105	25.59	-0.54	0.598	2.34	25.73	0.546	1
OREAS290	90	2.11	-0.47	0.337	15.97	2.12	0.066	3
OREAS291	114	4.17	-0.71	0.222	5.32	4.2	0.124	1

Number Mean Sb % Mean Sb cert. Sb cert. Sb std. dev. % Rel std. dev. >3 SD CRM – Sb submitted value % Bias Value% std. dev. GSB-10 31 11.54 -1.03 0.23 1.99 11.66 0.251 0 GSB-11 2 20.85 -1.18 0.49 2.35 21.1 0.342 0 OREAS232 58 0.01268 -4.66 0.00258 20.35 0.0133 0.0024 1 OREAS232b 123 0.013192 -6.44 0.002127 16.12 0.0141 0.0024 3 OREAS238 0.04567 0.00257 33 -0.93 5.63 0.0461 0.0089 0 OREAS238b 64 0.04516 -3.71 0.003613 8.00 0.0469 0.0083 0 OREAS290 0.729069 0.066397 9.11 0.745 43 -2.14 0.082 0 OREAS291 50 1.5 0.00 0.02 1.33 1.5 0.157 0

Table 7: Routine certified reference material results for antimony

CRM Results Discussion

The routine analysis undertaken by On Site is deemed by SXG and the QP to be performing well relative for the 2023-2024 period. In general, tight precision was obtained for the gold and antimony CRM results through the period with only minor trends (Au: Figure 27, Figure 28, Figure 29, Figure 30. SB: Figure 31, Figure 32, Figure 33). Accuracy was generally good, with a minor low bias observed in all CRM's, most notable in OREAS232b, OREAS291. This was reviewed with On Site leading to a step change in results throughout the year. While some outliers and failures did occur, these were considered in the context of the batch and results accepted if they were not material or relevant (for instance, when a high-grade CRM was added to a sub-economic batch).

OR230 Au Results

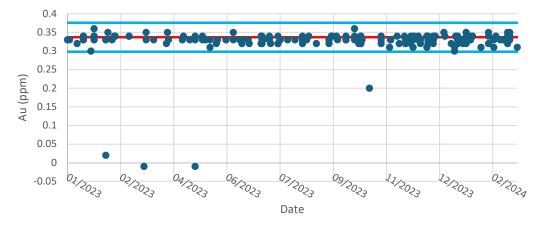


Figure 27: OREAS230 gold by fire assay certified reference material control plot

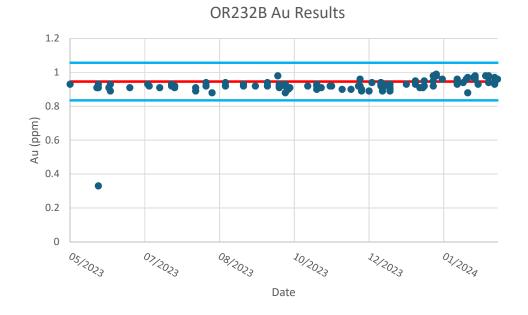


Figure 28: OREAS232b gold by fire assay certified reference material control plot

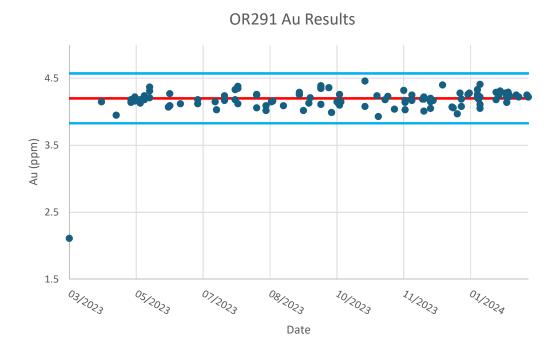


Figure 29: OREAS291 gold by fire assay certified reference material control plot

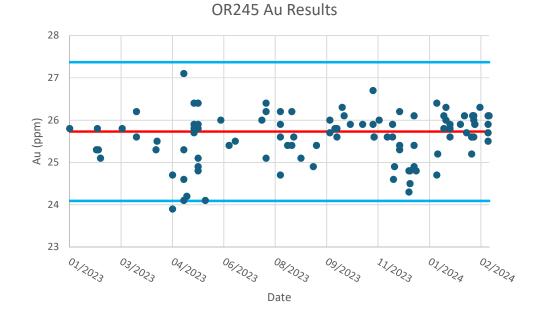


Figure 30: OREAS245 gold by fire assay certified reference material control plot

OR238B Sb Results

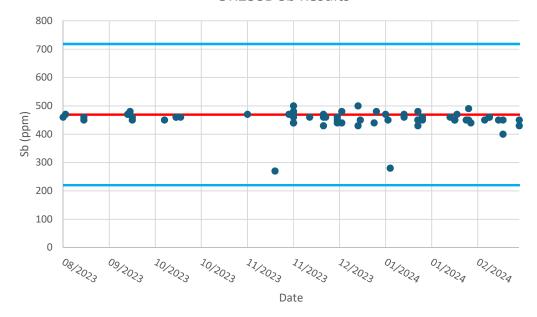


Figure 31: OREAS238b antimony standard certified reference material control plot

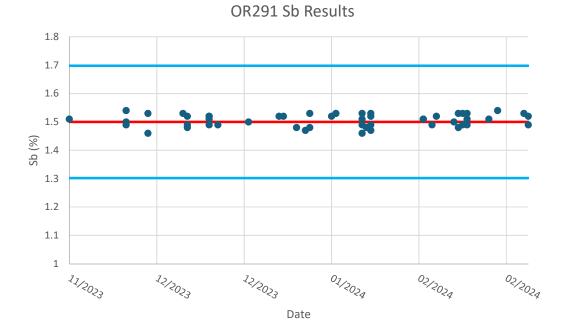


Figure 32: OREAS291 antimony standard certified reference material control plot

GSB-10 Sb Results

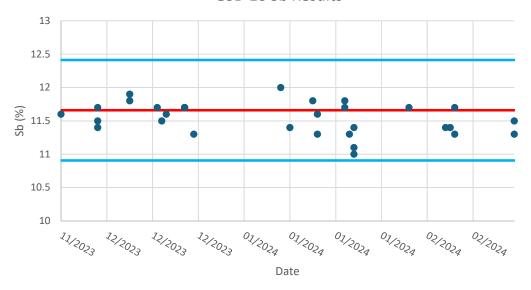


Figure 33: GSB-10 antimony standard certified reference material control plot

Blanks

SXG submitted uncrushed samples of basalt as Blank material sourced from the local Kilmore Quarry into assay sample lots, at an average rate of 1 in every 70 samples, to test for contamination during sample preparation. Additionally, quartz washes were added after every material sample (high antimony or visible gold) to prevent contamination from high grade gold for all samples assayed in the 2023-2024 period.

Measures to control contamination at On Site include cleaning of the mill pulverisers and the crusher with a high-pressure air gun as well as each mill pulveriser being placed in venting cabinets with high-power extraction fans and the use of quartz washes between samples. Sample submissions deemed as "High Grade" are processed on a single mill pulveriser in sequence to ensure that the quartz washes are occurring in sequence and QAQC measures are active.

The failure threshold for gold is 0.10 g/t, which was chosen since it represents ten times the detection limit of 0.01 g/t for AAS. The failure threshold for antimony is 0.05%, which was chosen for being five times the detection limit of 0.01% for AAS.

The Blank results, as displayed in Figure 34 and Figure 35, demonstrated a 97.83% passing rate for gold blanks and a 76.28% pass for antimony blanks.

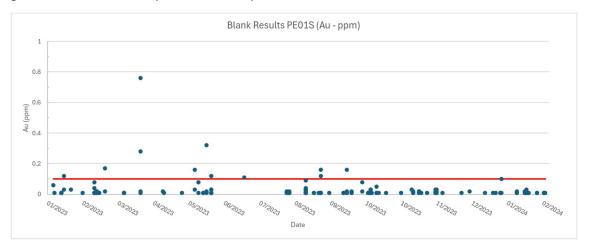


Figure 34: Gold Blank assay control plot, red line represents 0.1 g/t Au

NI 43-101 Report Sunday Creek Gold-Antimony, Victoria, Australia

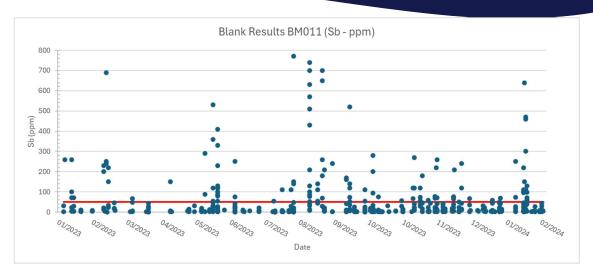


Figure 35: Antimony Blank assay control plot, red line represents 50ppm Sb

Pulp Duplicates

A total of 83 results for pulp duplicated with > 0.03 Au g/t have been completed by On Site for gold and 38 over > 0.25 Sb % for antimony (Au: Figure 36 & Table 8, Sb: Figure 37 & Table 9). The duplicates were assayed as separate aliquots from the same sample pulp from exploration drill core samples. Scatter plots of the pulp duplicate results have been presented in Figure 36 and Figure 37, and display no significant bias between the original and duplicate assays in either gold or antimony.

Table 8: Pulp duplicate gold statistics	
---	--

Description	Original	Duplicate	
Number of samples	83		
Mean	66.55	43.31	
Maximum	1.37	1.87	
Minimum	2590	1340	
Population Std Dev	0.03	0.03	
Coefficient of Variation	299.2	170.4	
Correlation Coefficient	0.50		

Table 9: Pulp	duplicate antimon	y statistics
---------------	-------------------	--------------

Description	Original	Duplicate	
Number of samples	38		
Mean	9.67	9.56	
Maximum	4.73	5.345	
Minimum	54.8	53.2	
Population Std Dev	0.25	0.42	
Coefficient of Variation	12.0	10.7	
Correlation Coefficient	0.88		

NI 43-101 Report Sunday Creek Gold-Antimony, Victoria, Australia

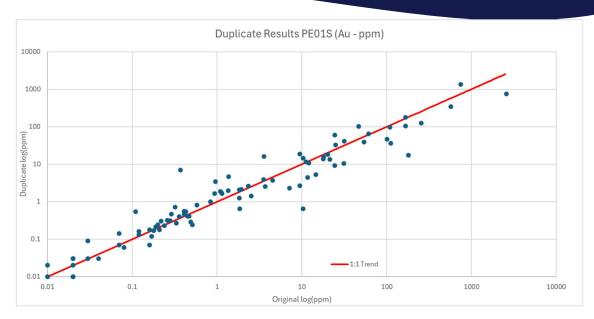


Figure 36: Pulp duplicate gold statistics, red line represents a y=x line

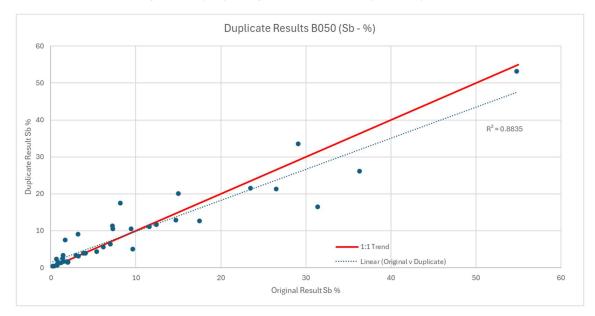
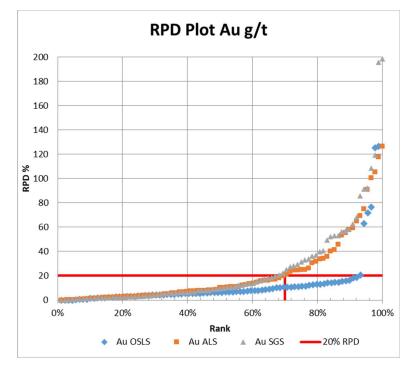


Figure 37: Pulp duplicate antimony statistics, red line represents a y=x line

11.5 UMPIRE CHECK ASSAY PROGRAM – PULP SAMPLES

Annual umpire laboratory check-assay programs were conducted for the reporting period for the routine pulp samples assayed by On Site. Selected pulp samples were dispatched to ALS Global South Australia and SGS Global Townsville for re-analysis of gold and antimony. Results from the check-assay have been summarised below for the primary results and for the alternative laboratories data. SGS Global does not analyse antimony at the higher concentrations routinely encountered at Sunday Creek and so was not used for antimony check-assay work at these levels.


Check-assay programs included a split of the master pulps and despatch to ALS Global for gold by FA and antimony by fusion XRF. Ninety-six primary samples were selected from previously analysed HQ2 and NQ2 diamond drill core pulps from the Sunday Creek Project. Samples from drillholes SDDSC061-SDDSC082 were selected based on known Au and Sb grades, in quantities that reflected the grade distribution found in Sunday Creek drill core.

Results are outlined in:

- Table 10: Gold by FA
- Table 11: Antimony analysis

Au	OSLS	OSLS Check	ALS	SGS
Number of samples	96	96	96	96
Mean	24.79	26.00	27.78	25.43
Maximum	256.00	254.00	260.00	246.00
Minimum	0.02	0.01	0.04	0.05
Pop Std Dev.	46.08	49.66	50.65	47.93
CV	1.86	1.91	1.82	1.88
Bias	-4.90%		-12.05%	-2.59%
Cor. Coeff.	0.93		0.90	0.91
Percent of samples < 20% RPD	9:	3.18	69.32	67.05
Percent of samples < 35% RPD	94.32		81.82	77.27

Table 10: Gold by Fire Assay Umpire Check

Figure 38: Relative paired difference plot, original versus umpire checks, gold by fire assay

A comparison of results from On Site and the umpire check labs showed that SGS had a negative bias that suggested a relative under call of gold results in samples less than 30 ppm, and both ALS and SGS had unacceptable RPD levels, with 67.05% and 69.32% of samples respectively having a RPD value under 20%. On Site had a RPD of 93.18%, a value which is considered acceptable (Table 10 & Figure 38).

Sb	Onsite	Check	ALS	SGS
Number of samples	96	96	96	83
Mean (Sb ppm)	53260.80	52823.82	50632.57	6716.16
Maximum (Sb ppm)	558000.00	562000.00	529000.00	49276
Minimum (Sb ppm)	11.00	8.00	21.00	38
Pop Std Dev.	109054.18	108031.65	102191.19	9424.38
CV	2.05	2.05	2.02	1.40
Bias	0.82%		4.93%	87%
Cor. Coeff.	1.	00	1.00	0.88
Percent of samples < 20% RPD	91.67		77.08	18.07
Percent of samples < 35% RPD	95.83		92.71	31.33

Table 11: Antimony Umpire Check

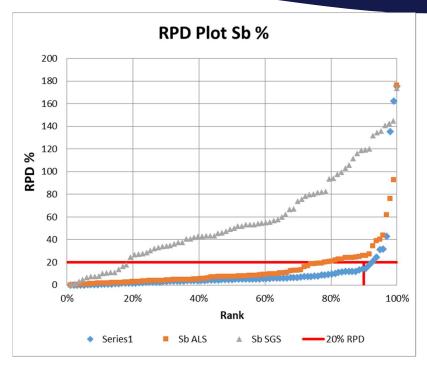


Figure 39: Relative paired difference plot, original versus umpire checks, Antimony

Data returned from On Site Laboratory Services (OSLS) shows a minor under calling of Sb results within 53ppm of the lower detection limit. Beyond this range, results were accurate and precise, with no bias present. Of the 96 primary samples, 91.67% of samples had a RPD of less than 20%, which is considered an acceptable result (Table 11 & Figure 39).

SGS shows unacceptable variability in Sb results. Only 18% of samples achieved a RPD value below 20%, which is considered an unacceptable result. Samples with Sb values below 1600 ppm showed a positive bias, whereas samples greater than 5700 ppm Sb displayed a negative bias. Thirteen samples came back with values at the upper detection limit, which were removed as outliers for the analysis.

Antimony check-assay results are acceptable for this style of mineralization and show the proprietary method used by On Site perform well compared to the XRF methodologies of ALS.

Qualified Persons Opinion

The QP considers that the assay QAQC results, when taken together, demonstrate the reliability of the assays for the reporting period, and that they are suitable for use in future Mineral Resource Estimation.

12.0 Data Verification

The author of this Technical Report conducted the following work in the verification of the Southern Cross Gold data and interpretations:

- Visited the Kilmore core logging shed;
- Observed geological logging of the drill core, compared this with information held in the MX Deposit database;
- Understood and discussed the geological logging process;
- Checked selected assay results against half core remaining in core trays;
- Did not take independent sampling of core for check assays, as the procedure for logging, sampling and assay is robust, and several samples with visible gold were confirmed as correlating with drill logs and assays;
- Confirmed field locations of selected drill holes and prospects;
- Understood and validated QAQC for sampling of drill core. The assay data is assessed as valid and supported by QAQC protocols;
- The digital collar survey records supplied by the surveyors were consistent with the database entries.
- The IMDEX Hub-IQ[™] system for recording, storing and transferring downhole survey measurements, with this system considered industry best practice as it removes the potential for transcription errors from the drillers and geologists. The source data checks for the downhole surveys identified no errors for the drill holes checked.
- Systematic and routine bulk density measurements using the water immersion method is completed on each hole. The core being used has not been dried either in an oven or by sunlight. However, QP deemed the moisture content within the core is not material and the semi-dry method employed on core is closely related to an oven-dry bulk density reading.
- Inspected mineralized drill core from the each of the prospects.

DATA LIMITATIONS

Due to the lack of QAQC information pertaining to historical exploration work, and particularly the historical RC drilling, it is the opinion of the QP that these historical assay data should not be relied upon as part of future work conducted by SXG, including any potential mineral resource estimations.

Only those historical drillholes whose location and assay information can be confirmed to be reliable, and for which the original logging information can be integrated into the SXG logging system, should be considered for incorporation into SXG's project database.

ADEQUACY OF THE DATA

The QP has reviewed historical exploration information associated with the Sunday Creek Project and surrounding area, and concludes that the survey information yields valid information as related to the geology of the Property and are therefore sufficient to be used in background geological interpretations.

The QP has reviewed the adequacy of SXG's sample preparation, security, and analytical procedures and found no significant issues or inconsistencies that would cause one to question the validity of the data. The analytical work was conducted at independent, commercial, and accredited laboratories that used reasonable gold and antimony standard sampling practices and analytical methods.

The QP reviewed and discussed logging procedures, density measurements, sampling procedures, and QAQC systems with the SXG team. altogether, the Company, and the on-site team, has used the appropriate methodologies with respect to sample preparation, analyses, and security to ensure the integrity of the data.

With respect to QAQC work, SXG has properly utilized and interpreted CRMs, Sample Blanks, core duplicates, pulp duplicates, and check-lab assays. The review of the QAQC results enables the QP to form the opinion that the SXG exploration data is of reasonable quality, minimal contamination occurred during sample preparation and at the laboratories, and the analytical results are repeatable with good precision and accuracy.

It is the QPs opinion that the SXG exploration data and resulting datasets provide a reasonable and accurate representation of the Sunday Creek Project and are of sufficient quality to support the technical summary, conclusions, and recommendations presented in this Technical Report.

13.0 Mineral Processing and Metallurgical Testing

Preliminary metallurgical testing has been completed at the Sunday Creek Project and additional metallurgical testwork is underway. The initial program was completed by Australian Minmet Metallurgical Laboratories Pty Ltd (AMML), an established mineral and metallurgical testing laboratory specialising in flotation, hydrometallurgy, gravity and comminution testwork at their testing facilities in Gosford, NSW (Doffay, 2023). The program was supervised by Craig Brown of Resources Engineering & Management Pty Ltd (REM), who was engaged to develop plans for initial sighter flotation testing of samples from drilling of the Sunday Creek deposit (Brown, 2024). REM's work programme design and findings are summarised as follows:

Two quarter core intercepts were selected for metallurgical test work (Table 12). A split of each was subjected to assay analysis:

<u>Sample</u> Location	<u>Sample</u> <u>Name</u>	<u>Weight</u> (kg)	<u>Drill hole</u>	<u>from</u> (m)	<u>to (m)</u>	<u>Length</u> (m)	<u>Au</u> ppm	<u>Sb%</u>	<u>As%</u>
Rising Sun	RS01	22.8	MDDSC025	275.9	289.3	13.4	3.18	1.06	0.223
Apollo	AP01	16.6	SDDSC031	220.4	229.9	9.5	4.89	0.443	0.538

The samples submitted for metallurgical testwork were indicative of the upper levels of each respective prospect at the time of sample selection. However, RS01 is of a lower average tenor and contains less visible gold than the main lower Rising Sun system is now understood to contain. This has been demonstrated in subsequent drilling post metallurgical sample selection, and thus RS01 may not be reflective of the zone as now understood. The Author suggests caution with regard to conclusions drawn from RS01 testwork.

The characterisation test work included:

- Diagnostic LeachWELL testing.
- Gravity recovery by Knelson concentrator and hand panning.
- Timed flotation of combined gravity tails.
- Rougher-Cleaner flotation (without gravity separation), with sizing of products, to produce samples for mineralogical investigation.
- Mineral elemental concentrations and gold deportment was investigated using Laser Ablation examination by University of Tasmania.

Mineralogical Investigations

Assay data and QXRD Mineralogical assessment were used to estimate mineral contents for the test products, and, from this, to assess performance in terms of minerals as well as elements, including contributions to gold deportment (McArthur, 2023). For both test samples, observations and calculations indicated a high proportion of native ('free') gold: 84.0% in RS01 and 82.1% in AP01.

Samples of size fractions of the three sulphide and gold containing flotation products from the Rougher-Cleaner test series were sent to MODA Microscopy for optical mineralogical assessment. Key observations were:

- The highest gold grade samples from each test series found multiple grains of visible gold which were generally liberated, with minor association with stibnite (antimony sulphide).
- Stibnite was highly liberated and was very 'clean' 71.7% Sb, 28.3% S.
- Arsenopyrite was also highly liberated indicating potential for separation.
- Pyrite was largely free but exhibited some association with gangue minerals.

Cyanidation

Both samples exhibited high cyanide solubility of gold, at a moderate grind size of 80% passing 106 μ m (74.8% in RS01 and 68.4% in AP01). The results reflected that the sulphide minerals (pyrite, stibnite and arsenopyrite) contain relatively low gold concentrations, and that most of the gold is 'free' gold.

Gravity

The response at grind size of 80% passing 106 μ m to gravity recovery differed for the two samples, reflecting the differences in content of coarse free gold:

- **RS01** 18% recovery, 66 times upgrade to 185 g/t Au concentrate, estimated to have 89% of the contained gold as 'free' gold.
- **AP01** 33% recovery, 126 times upgrade to 1,090 g/t Au concentrate, estimated to have 96% of the contained gold as 'free' gold.

Visible gold was observed in the AP01 concentrate. However, the lower average tenor of RS01 compared to the current level of visible gold now observed in the main lower Rising Sun system (which was discovered after the met samples were selected), indicates this result may not be reflective of this zone overall. Additionally, for both samples, given the high proportion of the feed gold estimated to be as 'free' gold, it is considered that gravity separation of larger feed samples could result in higher recovery of gold to a gravity concentrate.

Gravity and Bulk Rougher Flotation

Timed rougher flotation tests were performed on the tailings from the gravity recovery assessment. Analysis of results indicated that two separate concentrate products could be produced – an antimony concentrate, with high proportion of the feed antimony plus gold, and a concentrate of the remaining sulphides, containing further gold. Results for combined gravity recovery and flotation at 12 minutes:

- Rising Sun:
 - Total gold recovery was 93.3% for the three separate rougher products with:
 - Gravity Concentrate graded 185 g/t Au,
 - 'Rougher 1' graded 29.1 g/t Au, and
 - ' 'Rougher 2' graded 19.0 g/t Au.
 - Primary antimony recovery was 89.5% for 'Rougher 1' containing 28.5% Sb and 0.37% As.
- Apollo:
 - Total gold recovery was 97.6% for the three separate rougher products with:
 - Gravity Concentrate graded 1,090 g/t Au,
 - 'Rougher 1' graded 95.6 g/t Au, and
 - 'Rougher 2' graded 11.1 g/t Au

 Primary antimony recovery was 94.3% for 'Rougher 1' containing 8.90% Sb and 6.6% As.

It was apparent from this test that improved selectivity is required for Apollo feed types; either through shorter flotation times (potential loss of antimony recovery) or modified chemical conditions. The 'Rougher 2' concentrate was low grade in sulphides and gold, reflecting the high rate of recovery of these to the Gravity Concentrate and the 'Rougher 1' concentrate. Grades of this product may be improved by separating the non-antimony sulphides from the 'Rougher 1' concentrate and diverting them to the second product.

Differential Rougher–Cleaner Batch Flotation (Without Gravity)

For each sample, Rougher-Cleaner flotation testing was conducted on the original samples without preliminary gravity recovery. This work was conducted in two stages, to produce a separate antimony product with gold, and a separate sulphide-gold product. Based on the differential flotation kinetics shown by the preliminary testing, the Rougher 1 flotation time for the RS01 sample was 4 minutes and the Rougher 2 flotation time 8 minutes. For the AP01 sample Rougher 1 flotation time was 2 minutes and Rougher 2 flotation time was 10 minutes. Each rougher concentrate was cleaned separately. Cleaner 1 (Rougher 1 Con) was 3 minutes and Cleaner 2 (Rougher 2 Con) was 6 minutes for both samples.

- Rising Sun
 - Overall gold recovery of 90.9%.
 - The cleaning stage on the Rougher 1 concentrate was very effective, producing a 51.8% grade antimony concentrate at high (93.8%) antimony recovery.
 - Low arsenic recovery in both rougher and cleaner stages produced a low arsenic grade in the antimony concentrate of 0.37% As. A target **grade of 60% Sb** may be possible with further cleaning to remove pyrite and non-sulphide gangue.
 - The second stage roughing and cleaning produced a high-grade gold concentrate 77.1 g/t Au with arsenic grade of 7.9% As.
- Apollo:
 - High overall gold recovery of 96.9%.
 - The reduced Rougher 1 flotation time enhanced the selectivity between the antimony and arsenic, though at slightly reduced antimony recovery. The cleaning stage on the Rougher 1 concentrate was very effective in rejecting arsenic to the Cleaner 1 Tail. But due to the ratio of As to Sb in the feed, the antimony concentrate product still had a higher arsenic grade 2.58% As and lower antimony grade 31.6%. Further cleaner rejection of arsenopyrite and pyrite is required to increase the Sb grade of the concentrate, with a target grade of >43%Sb.
 - The second stage roughing and cleaning produced a high-grade gold concentrate 132 g/t Au with an arsenic grade of 12.5% As.

Hypothetical Flotation Production (no gravity)

Based on the observed mineralogy of the flotation products, a hypothetical processing route was postulated in which Cleaner 1 Tail is added to the Rougher 2 Concentrate ahead of Cleaner 2 flotation. Calculations based on results from the sequential rougher flotation and separate cleaning of concentrates resulted in estimates of **88.9% - 95.0% recovery of gold** across the two products:

- Antimony concentrate, grading 32% 52% Sb (87.1% 93.8% recovery), 81.4 313.6 g/t Au (40% of feed gold) with low to moderate arsenic contents (0.4% and 2.58%). It was estimated that 96% 98% of the contained gold was native gold and;
- A sulphide concentrate containing 65.7 g/t 159.0 g/t Au (49% 55% of feed gold) with higher arsenic contents (5.7% and 12.1%). Critically 79% 82% of the contained gold was native gold indicating the opportunity for ease of gold separation.

Calculated balances for rougher and cleaner flotation (without gravity extraction from the front end) are summarised in Table 13-5. The gold recoveries and grades will be different with gravity separation ahead of flotation. Forecasts for this process route need to be confirmed with appropriate testing.

Metallurgical Balance	Mass %	Au g/t	Gold rec %	Sb %	Sb rec %	As%	As rec %	S%	S rec %
Feed		4.0		1.1		0.2		1.6	
Stibnite Concentrate	2.0	81.4	40.1	51.8	93.8	0.4	3.4	31.8	38.4
Sulphide Concentrate	2.9	65.7	48.7	1.4	3.7	5.7	79.3	31.8	57.7
Calculated Tailings	95.1	0.5	11.1	0.029	2.5	0.038	17.3	0.07	3.9
Overall			88.9						

Table 14: Apollo hypothetical flotation production (no gravity)

Metallurgical Balance	Mass %	Au g/t	Gold rec %	Sb %	Sb rec %	As%	As rec %	S%	S rec %
Feed		10.7		0.5		0.5		1.9	
Stibnite Concentrate	1.4	313.6	40.0	31.6	87.1	2.6	6.6	38.6	27.4
Sulphide Concentrate	3.7	159.0	55.0	1.4	10.8	12.1	83.6	35.6	68.6
Calculated Tailings	94.9	0.6	5.0	0.011	2.1	0.055	9.8	0.1	3.9
Overall			95.0						

Calculations of gold-type deportment estimated that gold in the stibnite concentrates was >95% 'free' gold. For the sulphide concentrates it was ~80% 'free' gold, indicating the opportunity for ease of gold separation. This would be less with gravity recovery ahead of flotation.

Analysis of mineral deportments shows the opportunity to improve overall flotation outcomes by having a mechanism to depress arsenopyrite and pyrite, and/or an additional cleaner stage in the antimony concentrate production section. An additional cleaner stage for the gold-sulphide stage is also indicated, to reject non-sulphide gangue.

Blending of feeds for processing, or blending of products from separate processing, may be beneficial to overall outcomes.

Sighter test summary

- The initial sighter tests, although preliminary, are highly encouraging.
- The high proportion of free/liberated gold means that most of the gold particles are not locked into sulphide lattices.
- First pass combinations of gravity concentration followed by flotation returned high overall gold recoveries.

- The stibnite mineralization is quite pure, making a relatively clean concentrate and the other sulphides can report to a separate concentrate stream.
- These positive attributes indicate scope for further optimisation when larger metallurgical samples that better represent the orebody are made available for further testwork.

14.0 Mineral Resource Estimates

There are no NI43-101 compliant reserve or resource estimates available for the Sunday Creek property.

15.0 Mineral Reserve Estimates

No mineral reserves have been reported.

16.0 Mining Methods

This section is not applicable to this Technical Report.

17.0 Recovery Methods

This section is not applicable to this Technical Report.

18.0 Project Infrastructure

This section is not applicable to this Technical Report.

19.0 Market Studies And Contracts

This section is not applicable to this Technical Report.

20.0 Environmental Studies, Permitting And Social Or Community Impact

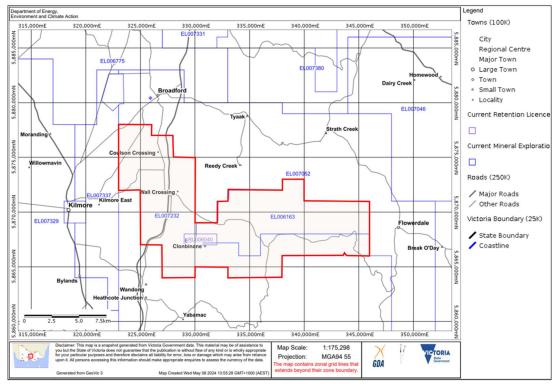
This section is not applicable to this Technical Report. Section 4 of this Technical Report addresses all current information related to these topics.

21.0 Capital And Operating Costs

This section is not applicable to this Technical Report.

22.0 Economic Analysis

This section is not applicable to this Technical Report.


23.0 Adjacent Properties

The QP has been unable to verify the information in this section related to other companies projects surrounding the Sunday Creek Project, and therefore, the information is general in nature and not necessarily indicative of the geology or mineralization style on the Property that is the subject of this Technical Teport. Adjacent property mineral tenure is based on current information maintained by the Geological Survey of Victoria.

Southern Cross Gold holds a 100% interest in licences EL006163, EL007232 and RL006040 which comprise the Property. There are no advanced projects in the immediate vicinity of the Property.

There are several relevant operations in the region including the Fosterville Gold mine owned by Agnico Eagle and the Costerfield mine owned by Mandalay Resources.

Exploration on adjacent exploration licences (EL007046, EL007052, EL006775, EL007337, EL007380 and EL007329), are shown in Figure 40. The ownership and status of each of the surrounding ELs are detailed in Table 15.

Source: Geovic (2024)

Figure 40: Sunday Creek adjacent properties.

<u>Title</u>	<u>Owner</u>	<u>Status</u>	First Granted	<u>Expiry</u>
EL007046	Currawong Resources Pty Ltd	Current	15/11/2022	14/11/2027
EL007052	Currawong Resources Pty Ltd	Current	15/10/2020	14/20/2025
EL006775	Kalamazoo Resources	Current	3/07/2020	2/07/2025
EL007337	Kalamazoo Resources	Current	29/04/2021	28/04/2026

Table 15: Ownership details - Sunday Creek adjacent properties

EL007380	Kalamazoo Resources	Current	15/03/2021	14/03/2026
EL007329	Red Rock Australasia Pty Ltd	Current	23/04/2021	22/04/2026

24.0 Other Relevant Data and Information

There is no other relevant data or information material to the Sunday Creek Property that has not been documented in the other sections of this Technical Report.

25.0 Interpretation and Conclusions

25.1 EXPLORATION RESULTS AND INTERPRETATIONS

Between 2020 and 2024, SXG has completed a significant amount of exploration work at its Sunday Creek Project that includes:

- Interpretation and integration of LiDAR, photogrammetry surveys, offset IP inversions and surface exploration datasets to generate multiple targets along the main dyke trend at Sunday Creek
- Surface geochemical sample collection that consists of 2,636 soil samples
- A total of 148 diamond drillholes totalling 61,570m of diamond drill core. The level of drilling at individual gold prospects varies at individual prospects from 1 to 9 holes at the Leviathan, Consols, Tonstal regionally, through to 61 holes (31,500m) at the Rising Sun prospect and 73 drillholes (25,385m) at the Apollo prospect and 14 holes (4,685m) at the Golden Dyke and Christina prospects
- A total of 34,157 core samples from 136 drillholes assayed at independent laboratories.

SXG's most significant gold prospects in the main Sunday Creek area include:

Rising Sun: The Rising Sun prospect sits in the centre of the main Sunday Creek area, partially blind at surface due to the Golden Orb fault offsetting and separating the mineralization at Rising Sun from the Apollo Prospect. The Rising Sun prospect has been traced over a strike length of 350m and from surface down to a vertical depth of over 1200 m. The best hole to date on the prospect at a 2m @ 1 g/t AuEq lower cut is:

SDDSC107: 1.0m @ 2,318.9 g/t AuEq (2,318.4 g/t Au, 0.3% Sb) from 684.3 m

 Apollo & Apollo East: The Apollo and Apollo East prospects are the eastern margin of the main Sunday Creek area, a large chargeability response outlines the main alteration halo of pyrite at the Apollo area to a depth of 250m (maximum depth potential of the IP survey). Within and below this halo is all the current mineralization defined to date. The Apollo and Apollo Easts prospect have been traced over a strike length of 450m and from surface down to a vertical depth of over 950 m. The Apollo prospect is below and to the east of the historically mined Apollo mine, which was developed to a vertical depth of 112m into the early 1900's. The best hole to date on the prospect at a 2m @ 1 g/t AuEq lower cut is:

SDDSC066: 1.7m @ 172.8 g/t AuEq (147.1 g/t Au, 13.7% Sb) from 543.5 m

• Golden Dyke & Christina: The Golden Dyke prospect sits below and to the west of the historically mined Golden Dyke mine, which was developed to a vertical depth of 181m and is adjacent to the Rising Sun prospect. The Christina Prospect is the western extent of the main Sunday Creek area, and was developed to a vertical depth of 70m. The majority of drilling done to date on the prospects have been targeted "Control holes" aimed at defining the dyke and alteration host, rather than drilling orthogonal to the mineralized vein arrays. The Golden Dyke & Christina prospects have been traced over a strike length of 750m and from surface down to a vertical depth of over 750m.

The best hole to date on the prospect at a 2m @ 1 g/t AuEq lower cut is: SDDSC049: 9.6m @ 14.1 g/t AuEq (9.2 g/t Au, 2.6% Sb) from 204.4 m

All mineralization seen to date is hosted in, or close proximity to, the main dyke trend and associated altered sediments. The mineralization is subvertical in nature and strikes NNW crosscutting the main dyke trend which is striking towards 80°. The mineralization is characterized by a complex network of

brittle to semi-brittle, high-grade, epizonal, gold-antimony vein arrays and high grade "cores". Several late, clay and gouge filled faults offset and shift the mineralization around on the scale of <10's of metres within each prospect.

The Project contains a total of forty-three (43) >100 g/t AuEq x m and forty-nine (49) >50 to 100 g/t AuEq x m drill holes by applying a 2m @ 1 g/t AuEq lower cut.

While significant untested gaps still exist, it is possible that a ~1400m long mineralized strike length exists within the main Sunday Creek area with a potential zone width extent of up to 100m, and depth from surface to at least 1,200m. Further exploration work is required to validate the true extent of the mineralized strike area and expand the footprint regionally **along the 12 km main dyke trend**.

Along the main dyke trend several anomalous areas with high-grade results were intersected in regional drilling completed in 2023.

Highlights include:

SDDLV003: 0.5m @ 15.7 g/t Au from 87.0m (including visible gold), 4km east of RL006040.

SDDLV004: 0.3m @ 5.6 g/t Au from 73.4m and 0.3m @ 19.4 g/t Au from 100.7m, also 4km east of RL006040.

These results highlighted the potential for the main dyke trend, with consistent alteration and mineralization style between 4-8 km from the main Sunday Creek area.

Exploration Target

In January 2024 SXG released a maiden gold and antimony Exploration Target of 4.4-5.1 million tonnes grading at 7.2 g/t AuEq to 9.7 g/t AuEq for 1.0Moz AuEq to 1.6Moz AuEq. The Exploration Target was developed to demonstrate the scale and high-grade gold-antimony potential of the Sunday Creek Project.

The approximate Exploration Target ranges are listed in Table 16 and locations shown in Figure 41.

Range	Tonnes (Mt)	AuEq g/t*	Au g/t	Sb %	Au Eq (Moz)	Au (Moz)	Sb (kt)
Lower Case	4.4	7.2	5.3	1.2	1.0	0.74	53.5
Upper Case	5.1	9.7	7.8	1.2	1.6	1.28	62.8

Table 16: Sunday Creek Exploration Target for Apollo and Rising Sun at the Sunday Creek Project

Note: The potential quantity and grade of the Exploration Target is conceptual in nature and therefore is an approximation. There has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource. The Exploration Target has been prepared and reported in accordance with the 2012 edition of the JORC Code.

The Exploration Target for the Sunday Creek Project covers only 620m or about 50% of the known strike of the main drill area and encompasses the Rising Sun and Apollo areas. This Target area represents <10% of the 12 km strike of the dyke host across the Project.

The tonnage and grade are estimates based on continuity of mineralization defined by exploration diamond drilling results within proximity to the intrusive "main structure" zone and altered sediments. Strike extents in the lower-case model are minimised to half drill spacing (~14m) or to locally restrictive geology (i.e. bounds of bleached sediment or dyke) whichever was smaller. The upper-case model

strike extents were extended to the average vein strike (typically around ~40m) or to geological constraints, whichever was smaller.

The Exploration Target was limited to a vertical depth of 1,003m below surface (-710m RL), limited by the deepest mineralization defined at the time within the "main structure" dyke/dyke breccia and altered sediments within Rising Sun. Drilling indicates Rising Sun could contain higher gold and antimony grades than Apollo and Apollo Deeps.

A series of sub-vertical lodes within a 620 m-wide corridor has been outlined at Rising Sun and Apollo with mineralization remaining open to the east, west and also to depth (Figure 41).

Only the Rising Sun and Apollo areas were considered for the Exploration Target as they contain sufficient drilling to suggest continuity and infer grade ranges.

Wireframes have been created in Leapfrog Geo using a threshold of 1 g/t Au over 2m. The economic composite tool was used to allow for the inclusion of thin, high-grade intercepts. Grade ranges have been informed by a preliminary grade estimate conducted on top-cut, composited data using Leapfrog Edge. The high- and low-grade ranges are primarily driven by differences in top cuts applied to the Rising Sun estimate. The low-end grade range used a top cut of 24 g/t Au while the upper grade range used a top cut of 67 g/t Au. The change in top cuts reflects the exclusion or inclusion respectively of a higher-grade population present across multiple veins that may be sub-domained and estimated separately as additional drilling is conducted.

For the high-range domains Rising Sun (versus Apollo) contributes 64% of the tonnes and 80% of the contained ounces. Significant upside also remains within the tenor potential of Rising Sun when further high-grade domains can be recognized and separated to maintain the high-grade nature of the veins i.e. raising topcuts, utilising range restriction parameters or no top cuts need be applied with further data acquisition and analysis.

Notably the Exploration Target is constrained to the two main areas along the strike of the dyke breccia host on the Project: Rising Sun (over 340m strike) and Apollo (over 280m strike) for a total 620m of strike. This strike represents about 50% strike of the 1.2 km main drill footprint to date at Sunday Creek.

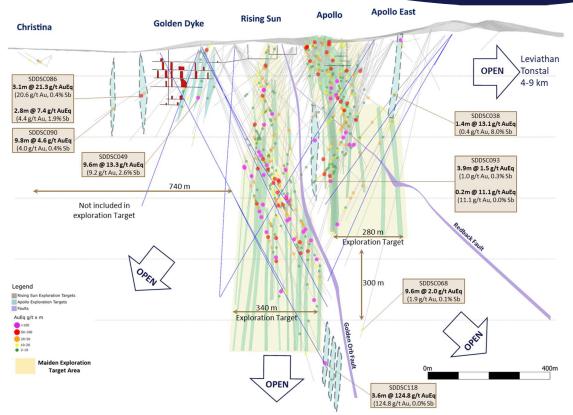


Figure 41: Longitudinal section showing the exploration target area developed in January 2024

25.2 QUALIFIED PERSON OPINION ON SXG'S EXPLORATION PROGRAMS

It is the QP's opinion that the exploration work conducted by SXG at the Sunday Creek Project is reasonable and within the standard practices of gold evaluation within the Melbourne Zone of Victoria, Australia. This contention is supported by the QPs:

- 1. Experience with orogenic gold projects in Victoria, Australia and validation of the gold and antimony mineralization at Sunday Creek;
- 2. positive review of SXG sample preparation, security, and analytical protocols;
- 3. review of the QAQC methodologies employed, and the positive results of the QAQC analytical work; and
- 4. review of the analytical results in conjunction with the laboratory certificates.

SXG exploration work results provide a significant update to the geology and mineral potential of the Melbourne Zone and the QP advocates that the information and data presented in this technical report forms a robust database for future exploration, and potentially, mineral resource estimation studies, at the Sunday Creek Project.

25.3 RISKS AND UNCERTAINTIES

SXG will attempt to reduce risk/uncertainty through effective project management, engaging technical experts to address technical, environmental, social and community aspects. To the best of the QPs knowledge, there are no environmental liabilities, significant factors or risks that may affect access, title, or the right or ability of SXG to perform exploration work on the Sunday Creek Project. With respect to obtaining additional permits, the QP has no reason to assume that the Company would not be granted additional exploration approvals to advance the Sunday Creek Project.

26.0 Recommendations

The Sunday Creek Project is a project of significant merit and is undergoing systematic exploration work to advance mineralized zones and individual prospects such as the:

- Rising Sun (RS), Apollo (AP), Apollo East (AE), Golden Dyke (GD) and Christina (CH) Prospects
- Regional prospects such as the Consols, Tonstal, Leviathan and Aftermath Prospects
- Continue with exploratory work along the main dyke trend and adjacent dyke trends to define new prospects

A two-phase work program is recommended with an estimated total cost of CDN\$18.1 million with a 10% contingency. A summary of the program with cost estimates is presented in Table 17.

Phase 1 work recommendations are estimated to cost approximately CDN\$3.2 million with a 10% contingency, and includes:

- A Phase 1 diamond drilling program consists of 1) step-out and infill drilling to further define and delineate the gold mineralization at known prospects in the Rising Sun and Apollo blocks,
 2) target delineation drilling at the Golden Dyke, Christina and Apollo East to follow-up on promising 2020-2023 surface programs that yielded favourable geological interpretations, 3) exploratory drilling along the main dyke trend to test targets identified through surface exploration work programs. A total of approximately 10,000m of drilling is recommended. Assuming an all-in drill cost of CDN\$250/m, which includes analytical work. The Phase 1 drill program is estimated to cost CDN\$2.5m.
- 2. Regional prospecting and soil geochemical sampling programs, and rock sampling programs along the prospective dyke trend. The work programs are estimated to cost CDN\$170K.
- Ongoing geophysical surveys along the main dyke trend that include an offset dipole-dipole IP survey. The surveying, data processing, interpretation, and modelling is estimated to cost CDN\$450K.
- 4. Ongoing metallurgical test work that includes 1) Additional metallurgical testwork including sequential flotation, gravity focus of free-milling gold, and potential hydrometallurgical avenues available, and 2) identify samples to be tested for additional data in determining the comminution testing, Bond Ball Mill Work Index, and Bond Abrasion Index. The metallurgical test work is estimated to cost CDN\$70K.

Advancement to the Phase 2 work recommendations is contingent on the positive results of the Phase 1 work programs.

If additional work is required to advance the Sunday Creek Project, the QP recommends a Phase 2 work program that is estimated to cost approximately CDN\$16.4 million with a 10% contingency. The Phase 2 work program includes:

- A Phase 1 diamond drilling program consists of 1) step-out and infill drilling to further define and delineate the gold mineralization at known prospects in the RS, AP, GD, CH, AE and 2) continue with exploratory drilling along the main dyke trend. Approximately 50,000m of drilling is recommended. At an all-in cost of CDN\$250/m, which includes analytical work, the cost of the drill programs is estimated at CDN\$12.5m.
- Advancement of metallurgical test work with flowsheet optimization studies, methodology of producing saleable products, and handling of by-products and waste materials. This work is estimated to cost CDN\$180K.

- 3. Continue with environmental baseline studies and community engagement and initiate marketing and possible mine planning studies. Environmental studies started in 2022 and include topics such as water quality, groundwater and surface water, plants/animals, wildlife, cultural/archaeological and air and noise quality monitoring. SXG should continue to communicate, educate and build relationships with community, Indigenous, and other stakeholders to explore employment and business opportunities, community investment opportunities, and the protection of community's environment. This work is estimated to cost CDN\$460K.
- 4. SXG has yet to disclose mineral resources at the Sunday Creek Project. Future technical reporting should include 3-D geological modelling, mineral resource estimation(s), and potentially, preliminary economic assessment that are prepared in accordance with JORC and CIM definition standards and guidelines (2012, 2014, 2019) and the disclosure rule, NI 43-101. Technical reporting is estimated to cost CDN\$90K.

Phase	ltem	Description	Estim	ated Cost \$CDN
	Diamond	Step-out, Infill, and exploratory drilling, and		
	Drill	analytical work, at the RS, AP, GD, and CH		
	Program 1	prospects (approximately 10,000 m)	\$	2,500,000
	Regional	Regional prospecting and soil geochemical		
H H	Surface	sampling programs, and rock sampling programs		
Phase 1	exploration	along the prospective dyke trend	\$	170,000
는 스	Geophysical	Induced Polarization along the main dyke trend.		
ļ	surveys	Data processing, interpretation, and modelling	\$	450,000
		Ongoing metallurgical test work to evaluate		
	Metallurgical	reagent consumptions, comminution		
	test work	characteristics, and gravity gold recovery.	\$	70,000
	Diamond	Step-out, Infill, and exploratory drilling, and		
	Drill	analytical work, at the RS, AP, GD, and CH		
	Program 2	prospects (approximately 50,000 m)	\$	12,500,000
	Metallurgical	Advancement of metallurgical test work with		
e 2	test work	flowsheet optimization studies.	\$	180,000
Phase 2		Initiate environmental, marketing, mine planning,		
훕	Modifying	and community consultation studies in		
	factors	consideration of modifying factors.	\$	460,000
		Technical reporting that includes 3-D geological		
	Technical	modelling, mineral resource estimation(s), and		
	Reports	preliminary economic assessments.	\$	90,000
		Sub-total (Phase 1)	\$	3,190,000
		Sub-total (Phase 2)	\$	13,230,000
		Sub-total (Phase 1 & Phase 2)	\$	16,420,000
		Contingency (10%)	\$	1,642,000
		Total estimated exploration work cost	\$	18,062,000

Table 17: Future work recommendations.

References

- Abello, J., Tan, P., & Shackell, I. 2008 Reedy Creek Clonbinane Project EL4460: Annual Technical Report and Expenditure for the period 1st July 2007 – 30th June 2008. Report submitted by Beadell Resources Ltd to Earth Resources Division, 8th July, 2008.
- Agnico Eagle, 2022. Fosterville operations overview. Website information accessed 16 February, 2022. https://www.agnicoeagle.com/English/operations/operations/Fosterville-Gold-Mine/default.aspx
- Brown, CA. 2024. Southern Cross Gold Ltd, Sunday Creek Flotation testing Sighter tests. Resources Engineering and Management Limited.
- Bierlein, F. P. and McKnight, S., 2005. Possible intrusion-related gold systems in the western Lachlan Orogen, Southeast Australia; Econ. Geol., 100, 385-398.

Clemens, J. D., Stevens, G. and Coetzee, L., 2022. Dating initial crystallisation of some Devonian plutons in central Victoria and geological implications; AJES, 70 (12), 1-13.

Mandalay Resources, 2024. Costerfield Operation, Victoria, Australia, NI 43-101 Technical Report

Doffay, P., 2023. Australian Minmet Metallurgical Laboratories Pty. Ltd (AMML). RS01 and AP01 Scoping Study.

- Earth Resources Victoria, 2022. Geology and exploration gold. Website information accessed 16 February, 2022. https://earthresources.vic.gov.au/geologyexploration/minerals/metals/gold
- Gardner, M. (2021): Geology Corner: The nuts and bolts of feasibility studies on gold; Canadian Mining Journal, January 14, 2021.
- GMK, 1991. Gold Mines of Kalgoorlie Ltd. Rushworth Joint Venture EL 1555, Final Report ("various authors").
- Hackett, D.O. 1974. Exploration licence 497 Rushworth/Whroo. Report on activity under EL497 for the quarter ending 31st December 1973.
- Hughes, M.J. 2003. EL4692 Reedy Creek North & ELA 4693 Reedy Creek South Review and proposed exploration. Report to Reliance Minerals Ltd, Martin J Hughes & Associates, July 2003. Presented as Appendix I in Bartlett (2005), Reedy Creek South Clonbinane Project EL4460. Annual Technical Report and expenditure for the period 30th June 2004 30th June 2005. Reliance Minerals, July 2005.
- Hu, Z. and Qi, L., 2014. 15.5 Sample Digestion Methods, Treatise on Geochemistry (Second Edition)
- JORC, 2012. Australasian code for the reporting of exploration results, minerals resources and ore reserves. Prepared by the Joint Ore Reserves Committee of the Australasian Institute of Mining & Metallurgy, Australian Institute of Geoscientists, and Minerals Council of Australia, December 2012.
- Krijnen, J., & Turner, G. 2015. Clonbinane Project: Exploration Licence 4987 and part EL4460 (within RLA6040) Annual Report on Work to June 30th, 2015. Annual Technical Report submitted by Nagambie Resources Ltd, 28th July, 2015
- Krummei, G.K. 1987. Exploration Licence 1603- Dabyminga 6 Monthly Report to 28.11.87. Ausminde Pty Ltd, December 1987. GEDIS Report No. EL1603_G1114_198711_half.tif
- Krummei, G.K. 1988. Exploration Licence 1603- Dabyminga 6 Month Report to 28.5.88. Ausminde Pty

Ltd. GEDIS Report No. EL1603_G1113_198804_half.tif

- Krummei, G.K., 1995. Exploration Licence 3129: Six Monthly Report for the period ending 28th December, 1994. Ausminde Pty Ltd, Report No. VEL3129/2, February 1995. GEDIS Report No. EL3129_G21766_199412_Half.tif.
- Leggo, N. and Holdsworth, K.H. 2013: Independent Geologist's Report on the Reedy Creek Mineral Property in Australia for Auminco Mines Limited 5 February 2013. Corvidae Pty Ltd as Trustee for Ravensgate Unit Trust Trading as Ravensgate.
- McArthur, GJ, 2023. Moda Microscopy. Clonbinane Testwork Mineralogy Apollo/Rising Sun
- Murphy, F. 2019. Internal company consultant's report. Fractore report to Mawson Resources. Structural geophysics and targeting, inputs to a solid geology interpretation and target identification. October 2019.
- Patterson, G. W. 1982. EL975 Clonbinane, Victoria Progress Report for Six Months Ended September 30, 1982. CRA Exploration Pty Ltd.
- Rech, H. 1994. Exploration Licence 3129: First quarterly report, second licence year 29/6/94 to 28/9/94. Report by Ausminde Pty Ltd, November 1994. GEDIS Report No. EL3129_G20940_199409_Quarterly.tif.
- Rech, H.J. 1996. Exploration Licence 3129: Annual Report for the year ending 28th of June 1996. Report submitted by Ausminde Pty Ltd, July 1996. GEDIS Report No. EL3129_G26431_199606_Annual.tif.
- Rech, H. 1999. Ausminde Holdings Pty Ltd EL3129- Final Report, 23/9/99. GEDIS Report No. EL3129_G28313_199909_Final.tif.
- Stoker P.T., 2006. Newmont Australia Technical Services Sampling Notes. AMC Report. January 2006, 03-05pp.
- VALMIN, 2015. Australasian Code for Public Reporting of Technical Assessments and Valuations of Mineral Assets (The VALMIN Code) [online].
- Voisey, C.R., Willis, D., Tomkins, A.G., Wilson, C.J.L., Micklethwaite, S., Salvemini, F., Bougoure, J. and Rickard, W.D.A. 2020. Aseismic refinement of orogenic gold systems. Economic Geology 115: 33-50.
- Vollgger, S.A., Wilson, C.J.L., Micklethwaite, S., Tomkins, A.G. and Cruden, A.R. 2020. Ore shoots in folded and fractured rocks insights from 3D modelling of the Fosterville gold deposit (Victoria, Australia). Ore Geology Reviews 118: https://doi.org/10.1016/j.oregeorev.2019.103272
- Webb, E.A. 1968. Exploration licence EL 54. Quarterly report for the period ended December 31, 1967.
- Wilson, C.J.L., Moore, D.H., Vollgger, S.A. and Madeley, H.E. 2020. Structural evolution of the orogenic gold deposits in central Victoria, Australia: The role of regional stress change and the tectonic regime. Ore Geology Reviews, 120: https://doi.org/10.1016/j.oregeorev.2020.103390

Zimmerman, D.O. 1967. Exploration licence EL 54. Quarterly report for the period ended March 31, 1967

Appendix 1: Drillhole Information

Hole number	Easting	Northing	Elevation	Total Depth	Prospect	Drilling Started	Drilling Completed	Azi	Dip
MDDSC001	331075.4	5867767	318.24	67	Apollo	08/18/2020	08/20/2020	283.3	-55.5
MDDSC002	331085	5867769	317.4	150.3	Apollo	08/21/2020	08/27/2020	241.9	-65.6
MDDSC003	330774.1	5867892	295.29	127.7	Rising Sun	08/31/2020	03/09/20	240.2	-65.2
MDDSC004	330641.2	5867817	309.1	269.4	Golden Dyke	11/10/20	10/24/2020	240.5	-44
MDDSC005	331030.8	5867796	310.69	160.5	Apollo	10/25/2020	02/11/20	89.6	-45.5
MDDSC006	331024.3	5867796	310.44	99.6	Apollo	02/11/20	06/11/20	237.1	-39.4
MDDSC007	330985.6	5867713	317.3	150.8	Apollo	11/17/2020	11/24/2020	70	-42
MDDSC008	331043.9	5867762	318.86	98.8	Gladys	09/11/20	11/11/20	253.2	-52
MDDSC009	331013.6	5867797	310.11	109.25	Gladys	11/26/2020	02/12/20	260	-50
MDDSC010	331034.1	5867796	310.93	151.3	Gladys	04/12/20	12/14/2020	214	-60
MDDSC011	331043.9	5867798	311.42	215.8	Gladys	12/14/2020	12/01/21	270	-55
MDDSC012	331172.8	5867843	309	262.9	Apollo	01/13/2021	01/02/21	252.4	-60
MDDSC013	331173.7	5867842	305.84	43.4	Apollo	02/02/21	04/02/21	223	-68
MDDSC013A	331170	5867842	309	270	Apollo	04/02/21	02/26/2021	223.2	-68
MDDSC014	330985.2	5867714	317.22	300	Apollo	03/03/21	03/19/2021	41.4	-75
MDDSC015	331189.9	5867858	306.29	29.8	Apollo	03/22/2021	03/25/2021	253	-65
MDDSC015A	331189.9	5867858	306.25	423.2	Apollo	03/26/2021	05/14/2021	253	-65
MDDSC016	331106.2	5867819	309.78	17.75	Apollo	05/15/2021	05/15/2021	236	-66
MDDSC016A	331106.2	5867819	309.78	270.1	Apollo	05/16/2021	05/23/2021	236	-66
MDDSC017	331202.5	5867856	307.55	450.2	Apollo	05/24/2021	06/23/2021	260	-72
MDDSC018	330538.4	5867885	295.28	296.5	Golden Dyke	06/25/2021	03/07/21	195	-55
MDDSC019	330615.8	5867886	300.39	196.4	Golden Dyke	04/07/21	08/17/2021	195	-57
MDDSC020	330754.5	5868023	294.6	269.2	Rising Sun	07/18/2021	07/26/2021	195	-55
MDDSC021	330754.5	5868023	294.6	321.4	Rising Sun	07/26/2021	08/13/2021	200	-65
MDDSC022	330875	5868005	307.19	282.5	Gladys	08/14/2021	08/28/2021	200	-55
MDDSC023	330981	5867845	297.35	222.6	Gladys	09/29/2021	04/09/21	175	-66
MDDSC024	330981	5867845	297.35	306.3	Gladys	05/09/21	09/20/2021	175	-77
MDDSC025	331154	5867964	323	444.2	Apollo	09/21/2021	09/10/21	210	-72
MDDSC026	331111.8	5867975	319.3	519.2	Apollo	10/10/21	10/31/2021	215	-73
MDDSC027	331150	5867964	323	401.9	Apollo	12/19/2021	01/24/2022	205	-65
SDDSC028	331550	5868090	362.5	150.8	Apollo	02/02/22	06/02/22	288	-30
SDDSC029	331233	5868014	343.1	220.6	Apollo	07/02/22	12/02/22	90	-60
SDDSC030	331294	5867801	320	104.5	Apollo	02/13/2022	02/24/2022	42	-45
SDDSC031	331191.4	5867860	307.4	282.1	Apollo	02/25/2022	05/03/22	250	-60
SDDSC032	331055.6	5867767	319	145.6	Apollo	06/03/22	03/18/2022	228.1	-65
SDDSC033	331171	5867844	306	246.2	Apollo	03/18/2022	04/25/2022	245.1	-51.4
SDDSC034	331089	5867789	313.41	165.3	Apollo	03/27/2022	07/04/22	221.2	-63.2
SDDSC035	331124	5867845	303.86	281.9	Apollo	08/04/22	04/20/2022	210	-60
SDDSC036	331154	5867856	305.3	263.9	Apollo	04/28/2022	05/05/22	238.2	-50.2
SDDSC037	331111.8	5867975	319.3	429.6	Gladys	06/05/22	05/28/2022	216.1	-60.1
SDDSC038	330965.3	5867725	314.5	401.9	Apollo	05/29/2022	06/18/2022	63.9	-37.2
SDDSC039	331172	5867842	306.3	323	Apollo	06/20/2022	08/07/22	249	-57
SDDSC040	331049.7	5867715	323.6	472.2	Apollo	09/07/22	07/30/2022	16.2	-62.9
SDDSC041	330776.9	5867891	295.4	174	Rising Sun	07/28/2022	05/08/22	221	-67
SDDSC042	331019.3	5867840	299.3	250.5	Apollo	07/30/2022	08/13/2022	137.5	-61.6
SDDSC043	330753	5868023	294.5	323.4	Rising Sun	08/15/2022	08/22/2022	198	-61.0
SDDSC044	330977	5867848	296.7	338.9	Apollo	08/14/2022	08/22/2022	91.6	-63.9
SDDSC045	331019	5867840	299.4	237.3	Apollo	08/23/2022	04/09/22	139	-69.8
SDDSC046	330753.4	5868022	294.6	240	Rising Sun	08/24/2022	08/30/2022	188.6	-47.2
SDDSC047	330613.1	5867886	300	263.8	Golden Dyke	02/09/22	08/09/22	209.1	-60.7
SDDSC048	330815.9	5867599	295.1	62.6	Apollo	06/09/22	08/09/22	36.8	-49.4
SDDSC048A	330815.7	5867599	295	645	Apollo	08/09/22	03/10/22	39.9	-46.4
SDDSC049	330612.8	5867886	300.2	308	Golden Dyke	09/09/22	09/20/2022	218.6	-54.3
SDDSC050	330539.2	5867885	295.3	923.7	Rising Sun	09/22/2022	11/18/2022	76.9	-64
SDDSC051	331182.5	5867850	306.2	263.5	Apollo	04/10/22	10/18/2022	226.4	-74.7
SDDSC052	331183.3	5867851	306.1	245.4	Apollo	10/18/2022	10/24/2022	246.8	-67.4
SDDSC053	330617	5867891	299.8	601.9	Rising Sun	10/25/2022	09/11/22	78.6	-62
SDDSC054	331180.2	5867848	306.1	285	Apollo	04/11/22	12/11/22	240	-77
SDDSC055	330870.5	5868067	305.4	522.2	Gentle Annie	11/11/22	11/30/2022	224.2	-60.3
SDDSC056	331107.9	5867849	303.1	194	Apollo	11/13/2022	11/19/2022	231.2	-35
SDDSC057	331108.4	5867975	319.4	414.2	Apollo	11/20/2022	05/12/22	184.3	-71.1

Table 18: Collar Information of all holes completed by Mawson / Southern Cross Gold

Hole number	Easting	Northing	Elevation	Total Depth	Prospect	Drilling Started	Drilling Completed	Azi	Dip
SDDSC059	330871.2	5868067	305.4	641.9	Root Hog	01/12/22	10/01/23	214	-75.5
SDDSC060	330538.4	5867884	295.6	263.8	Golden Dyke	04/12/22	09/12/22	167.3	-69.9
SDDSC061	330755.7	5868024	294.8	827.8	Gentle Annie	07/12/22	09/02/23	209.5	-81.7
SDDSC061W	330755.8	5868024	295	432.1	Gentle Annie	05/16/2023	05/20/2023	220	-85
SDDSC062	330537.1	5867883	295.6	339.3	Golden Dyke	12/12/22	10/01/23	199	-74.2
SDDSC063	331296.6	5867824	316.7	41.1	Apollo East	01/13/2023	01/14/2023	68	-35
SDDSC064	331031.5	5868098	325.1	1013.5	Root Hog	01/13/2023	10/03/23	239.6	-69.2
SDDSC065	331296.2	5867822	316.9	41.1	Apollo East	01/14/2023	01/15/2023	91.8	-39
SDDSC066	331291.1	5867823	316.8	669.9	Apollo	01/15/2023	09/02/23	278.9	-57
SDDSC067	330757	5868023	294.7	551	Rising Sun	10/02/23	06/03/23	220.2	-70.4
SDDSC068	331252.3	5868100	354.8	1041.2	Apollo	11/02/23	06/20/2023	211.3	-77.7
SDDSC069	330871.8	5868007	307.1	384.4	Rising Sun	09/03/23	03/22/2023	234	-59
SDDSC070	331031.3	5868098	324.9	911.3	Root Hog	03/15/2023	04/28/2023	231	-74.5
SDDSC071	330871.5	5868006	307.2	329.3	Rising Sun	03/22/2023	01/04/23	232	-51
SDDSC072	330871.7	5868005	307.2	259.7	Rising Sun	02/04/23	04/13/2023	222	-43
SDDSC073	331252.2	5868100	354.7	839.5	Apollo	12/04/23	05/25/2023	212	-69
SDDSC074	331109.7	5867976	319.1	902.1	Root Hog	04/15/2023	05/20/2023	255	-73
SDDSC075	330951	5868007	313.7	283.1	Root Hog	03/05/23	11/05/23	211	-40
SDDSC076	330618.4	5867890	299.7	322.5	Rising Sun	05/29/2023	07/06/23	73.4	-41
SDDSC077	330483.1	5867892	289.5	15.7	Rising Sun	05/26/2023	05/27/2023	73.3	-62.2
SDDSC077A	330483.1	5867892	289.5	134.4	Rising Sun	05/27/2023	05/30/2023	73.3	-62.2
SDDSC077A SDDSC077B	330483.1	5867892	289.5	834.2		05/31/2023	07/17/2023	73.3	-62.2
SDDSC0778		5867892	289.5	440.5	Rising Sun	08/06/23			-59
	330617.6				Rising Sun		06/23/2023	83.3	
SDDSC079	331252	5868099	354.7	700.7	Apollo Dising Com	03/07/23	07/24/2023	210	-65
SDDSC080	330754.4	5868022	294.6	374.6	Rising Sun	06/25/2023	04/07/23	185	-71
SDDSC081	330756.1	5868022	294.8	341.5	Rising Sun	05/07/23	07/22/2023	210	-60
SDDSC082	330482.3	5867892	289.5	1158.7	Rising Sun	07/18/2023	09/26/2023	74	-68
SDDSC083	330461.8	5867921	285.6	347.5	Golden Dyke	07/20/2023	07/30/2023	196	-54
SDDSC084	330755.9	5868022	294.8	323.4	Rising Sun	07/23/2023	07/31/2023	210	-53
SDDSC085	331251.7	5868100	354.7	827.4	Apollo	07/25/2023	08/23/2023	222	-64
SDDSC086	330462	5867920	285.6	298.8	Golden Dyke	07/31/2023	06/08/23	208	-33
SDDSC087	330755.4	5868021	294.7	289.9	Rising Sun	07/31/2023	06/08/23	214	-43
SDDSC088	330754.7	5868020	294.6	340	Rising Sun	06/08/23	08/14/2023	214	-33
SDDSC089	330462.5	5867922	285.7	390	Golden Dyke	06/08/23	08/13/2023	214	-48
SDDSC090	330461.3	5867922	285.7	427.2	Christina	08/15/2023	08/24/2023	226	-31
SDDSC091	330867.4	5868062	305.3	530.4	Gentle Annie	08/16/2023	02/09/23	210	-69
SDDSC092	330537.2	5867883	295.5	803.8	Rising Sun	01/09/23	12/10/23	79	-60
SDDSC093	331290.4	5867823	316.7	610.9	Apollo	08/26/2023	09/14/2023	271	-47.5
SDDSC094	330639.2	5867847	306.15	23.3	Rising Sun	03/09/23	05/09/23	68.5	-56
SDDSC094A	330639.6	5867847	306.4	359.6	Rising Sun	06/09/23	09/15/2023	68.5	-56
SDDSC095	331290.9	5867823	316.7	368.3	Apollo	09/15/2023	09/22/2023	271	-53
SDDSC096	330638.8	5867847	306.2	347.9	Rising Sun	09/15/2023	09/22/2023	68	-63.5
SDDSC097	331291.1	5867823	316.7	62.3	Apollo	09/23/2023	09/25/2023	276	-50.5
SDDSC097A	331290.8	5867823	316.8	575	Apollo	09/26/2023	10/17/2023	277	-50
SDDSC098	330639.4	5867847	306.2	278.5	Rising Sun	09/23/2023	09/28/2023	72	-48.5
SDDSC099	330639.2	5867847	306.1	284.7	Rising Sun	09/28/2023	05/10/23	71.5	-58.5
SDDSC100	330483.5	5867892	289.4	1042	Rising Sun	09/27/2023	11/15/2023	74.5	-64
SDDSC101	330640.2	5867848	306.2	181.5	Rising Sun	06/10/23	08/10/23	63	-37
SDDSC102	330537.2	5867883	295.5	596.8	Rising Sun	10/13/2023	05/11/23	75	-59
SDDSC103	330638.8	5867848	306.2	260.6	Rising Sun	09/10/23	10/17/2023	54	-53.5
SDDSC104	330638.8	5867847	306.2	595.2	Rising Sun	10/18/2023	05/11/23	64.5	-65.7
SDDSC105	331291.2	5867823	316.7	350.6	Apollo	10/17/2023	10/26/2023	275	-55.5
SDDSC106	331291	5867824	316.8	653.5	Apollo	10/26/2023	12/11/23	279.5	-53
SDDSC107	330536.9	5867883	295.5	815.9	Rising Sun	05/11/23	12/15/2023	77.5	-62
SDDSC108	331465.4	5867865	333.1	32	Apollo	07/11/23	08/11/23	272.5	-50
SDDSC108A	331465.5	5867865	333.1	855.9	Apollo	08/11/23	08/12/23	272.5	-50
SDDSC109	331290.2	5867823	316.8	520.9	Apollo	11/13/2023	11/26/2023	273.5	-44.5
SDDSC110	330483.5	5867892	289.4	857.7	Rising Sun	11/17/2023	12/19/2023	78	-66
SDDSC111	331289.4	5867823	316.7	496.7	Apollo	11/26/2023	08/12/23	270	-38
SDDSC112	331464.9	5867865	333.2	490.9	Apollo	10/01/24	05/01/24	267	-42
SDDSC112 SDDSC112W1	331464.9	5867865	333.2	766.4	Apollo	06/01/24	01/31/2024	266.9	-42.1
SDDSC112W1	330510.1	5867852	295.4	905.5	Rising Sun	12/16/2023	09/02/24	67.5	-42.1
SDDSC113 SDDSC114	330463.6	5867912	295.4	878.6	Rising Sun	12/16/2023	01/19/2024	82	-58
SDDSC114 SDDSC114W1					-	04/30/2024	01/19/2024		-58 -60.3
SDDSC114W1 SDDSC115	330463.6	5867912	286.6	625.1 17.6	Rising Sun		· · ·	81.8	
	330463.6	5867912	286.6	0./ I	Rising Sun	01/20/2024	01/20/2024	83	-58.5

Hole number	Easting	Northing	Elevation	Total Depth	Prospect	Drilling Started	Drilling Completed	Azi	Dip
SDDSC116	331464.9	5867865	333.2	682.6	Apollo	01/02/24	02/03/24	272.5	-45
SDDSC117	330510.1	5867852	296.5	1107.6	Rising Sun	10/02/24	08/04/24	70.5	-64.5
SDDSC118	330463.6	5867912	286.6	1246.2	Rising Sun	02/21/2024	04/22/2024	80	-65
SDDSC119	331498.2	5867858	336.7	858.6	Apollo	03/03/24	04/22/2024	272.5	-45.2
SDDSC119W1	331498.2	5867858	336.7	643	Apollo	04/23/2024	04/25/2024	273.9	-48.9
SDDSC120	331107.9	5867977	319.2	1022.5	Rising Sun	04/03/24	04/15/2024	266.5	-55
SDDSC121	330510.3	5867851	295.4	588.2	Rising Sun	09/04/24	04/30/2024	72	-63
SDDSC121W1	330510.3	5867851	295.4	953.4	Rising Sun	01/05/24	05/25/2024	72	-63

Table 19: Sample results at a 2m @ 1 g/t AuEq lower cut

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
MDDSC001	0	15.2	15.2	3.7	0.2	4.0	61.2	15.2 m @ 4.0 g/t AuEq (3.7 g/t Au, 0.2% Sb) from 0.0 m
MDDSC001	0	0.45	0.45	2.5	0.1	2.7	1.2	0.5 m @ 2.7 g/t AuEq (2.5 g/t Au, 0.1% Sb) from 0.0 m
MDDSC001	55.5	56.4	0.9	2.2	0.0	2.2	1.9	0.9 m @ 2.2 g/t AuEq (2.2 g/t Au, 0.0% Sb) from 55.5 m
MDDSC001	64.55	64.72	0.17	2.0	1.1	4.1	0.7	0.2 m @ 4.1 g/t AuEq (2.0 g/t Au, 1.1% Sb) from 64.6 m
MDDSC002	16.91	18	1.09	1.6	0.3	2.0	2.2	1.1 m @ 2.0 g/t AuEq (1.6 g/t Au, 0.3% Sb) from 16.9 m
MDDSC002	26.45	26.7	0.25	6.0	0.2	6.4	1.6	0.3 m @ 6.4 g/t AuEq (6.0 g/t Au, 0.2% Sb) from 26.5 m
MDDSC002	39	40	1	2.1	0.0	2.1	2.1	1.0 m @ 2.1 g/t AuEq (2.1 g/t Au, 0.0% Sb) from 39.0 m
MDDSC002	51	55.7	4.7	5.5	1.0	7.3	34.2	4.7 m @ 7.3 g/t AuEq (5.5 g/t Au, 1.0% Sb) from 51.0 m
MDDSC002	76	76.48	0.48	1.1	0.0	1.1	0.5	0.5 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 76.0 m
MDDSC002	96	96.57	0.57	2.3	0.3	2.9	1.6	0.6 m @ 2.9 g/t AuEq (2.3 g/t Au, 0.3% Sb) from 96.0 m
MDDSC002	109	110.14	1.14	22.3	3.3	28.5	32.5	1.1 m @ 28.5 g/t AuEq (22.3 g/t Au, 3.3% Sb) from 109.0 m
MDDSC002	112.56	112.81	0.25	9.9	1.1	12.0	3.0	0.3 m @ 12.0 g/t AuEq (9.9 g/t Au, 1.1% Sb) from 112.6 m
MDDSC002	115.7	130	14.3	2.9	0.5	3.8	54.6	14.3 m @ 3.8 g/t AuEq (2.9 g/t Au, 0.5% Sb) from 115.7 m
MDDSC002	143	144	1	1.9	0.0	1.9	1.9	1.0 m @ 1.9 g/t AuEq (1.9 g/t Au, 0.0% Sb) from 143.0 m
MDDSC003	71.7	73.22	1.52	3.8	0.3	4.3	6.6	1.5 m @ 4.3 g/t AuEq (3.8 g/t Au, 0.3% Sb) from 71.7 m
MDDSC003	75.5	81	5.5	1.6	1.4	4.2	23.2	5.5 m @ 4.2 g/t AuEq (1.6 g/t Au, 1.4% Sb) from 75.5 m
MDDSC003	84.26	84.5	0.24	2.0	0.0	2.0	0.5	0.2 m @ 2.0 g/t AuEq (2.0 g/t Au, 0.0% Sb) from 84.3 m
MDDSC003	91.2	92.55	1.35	0.4	0.6	1.6	2.2	1.3 m @ 1.6 g/t AuEq (0.4 g/t Au, 0.6% Sb) from 91.2 m
MDDSC003	115.6	118.7	3.1	0.6	0.0	0.6	2.0	3.1 m @ 0.6 g/t AuEq (0.6 g/t Au, 0.0% Sb) from 115.6 m
MDDSC005	88	92.15	4.15	3.5	0.1	3.6	15.1	4.2 m @ 3.6 g/t AuEq (3.5 g/t Au, 0.1% Sb) from 88.0 m
MDDSC005	99.32	99.55	0.23	1.2	0.4	2.0	0.5	0.2 m @ 2.0 g/t AuEq (1.2 g/t Au, 0.4% Sb) from 99.3 m
MDDSC005	106.85	112.5	5.65	0.6	0.6	1.8	10.2	5.7 m @ 1.8 g/t AuEq (0.6 g/t Au, 0.6% Sb) from 106.9 m
MDDSC005	119.75	135.2	15.45	2.5	1.0	4.5	69.2	15.5 m @ 4.5 g/t AuEq (2.5 g/t Au, 1.0% Sb) from 119.8 m
MDDSC006	28.7	29.7	1	2.2	0.0	2.2	2.2	1.0 m @ 2.2 g/t AuEq (2.2 g/t Au, 0.0% Sb) from 28.7 m
MDDSC006	32.7	32.9	0.2	1.0	0.0	1.0	0.2	0.2 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 32.7 m
MDDSC006	56.97	57.52	0.55	0.0	4.4	8.3	4.6	0.6 m @ 8.3 g/t AuEq (0.0 g/t Au, 4.4% Sb) from 57.0 m
MDDSC007	76.2	78.9	2.7	4.0	0.7	5.4	14.6	2.7 m @ 5.4 g/t AuEq (4.0 g/t Au, 0.7% Sb) from 76.2 m
MDDSC008	25.7	26.6	0.9	1.4	0.0	1.4	1.3	0.9 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 25.7 m
MDDSC008	31.8	32.7	0.9	1.9	0.0	2.0	1.8	0.9 m @ 2.0 g/t AuEq (1.9 g/t Au, 0.0% Sb) from 31.8 m
MDDSC008	67.69	68.4	0.71	21.5	5.0	30.9	21.9	0.7 m @ 30.9 g/t AuEq (21.5 g/t Au, 5.0% Sb) from 67.7 m
MDDSC008	95	95.15	0.15	8.0	3.9	15.3	2.3	0.2 m @ 15.3 g/t AuEq (8.0 g/t Au, 3.9% Sb) from 95.0 m
MDDSC009	30.17	30.73	0.56	0.4	1.2	2.6	1.5	0.6 m @ 2.6 g/t AuEq (0.4 g/t Au, 1.2% Sb) from 30.2 m
MDDSC009	67	68.7	1.7	2.4	0.0	2.4	4.1	1.7 m @ 2.4 g/t AuEq (2.4 g/t Au, 0.0% Sb) from 67.0 m
MDDSC010	40.5	41.5	1	12.2	0.0	12.2	12.2	1.0 m @ 12.2 g/t AuEq (12.2 g/t Au, 0.0% Sb) from 40.5 m
MDDSC010	47.9	48.9	1	1.5	0.0	1.5	1.5	1.0 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 47.9 m
MDDSC010	72.37	79.34	6.97	6.0	0.1	6.3	43.9	7.0 m @ 6.3 g/t AuEq (6.0 g/t Au, 0.1% Sb) from 72.4 m
MDDSC010	82.32	82.6	0.28	2.2	0.0	2.2	0.6	0.3 m @ 2.2 g/t AuEq (2.2 g/t Au, 0.0% Sb) from 82.3 m
MDDSC010	92.85	94.85	2	0.9	0.2	1.2	2.4	2.0 m @ 1.2 g/t AuEq (0.9 g/t Au, 0.2% Sb) from 92.9 m
MDDSC010	98.5	101.28	2.78	11.9	1.8	15.3	42.4	2.8 m @ 15.3 g/t AuEq (11.9 g/t Au, 1.8% Sb) from 98.5 m
MDDSC010	120	120.83	0.83	1.1	0.1	1.2	1.0	0.8 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.1% Sb) from 120.0 m
MDDSC011	100	101	1	3.1	0.0	3.1	3.1	1.0 m @ 3.1 g/t AuEq (3.1 g/t Au, 0.0% Sb) from 100.0 m
MDDSC011	184.2	185.2	1	1.0	0.0	1.0	1.0	1.0 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 184.2 m
MDDSC012	73.6	74.3	0.7	0.9	0.2	1.3	0.9	0.7 m @ 1.3 g/t AuEq (0.9 g/t Au, 0.2% Sb) from 73.6 m
MDDSC012	77.8	78.6	0.8	0.3	0.8	1.7	1.3	0.8 m @ 1.7 g/t AuEq (0.3 g/t Au, 0.8% Sb) from 77.8 m
MDDSC012	155.45	155.76	0.31	0.2	0.8	1.7	0.5	0.3 m @ 1.7 g/t AuEq (0.2 g/t Au, 0.8% Sb) from 155.5 m
MDDSC012	178.2	181	2.8	4.1	0.3	4.7	13.2	2.8 m @ 4.7 g/t AuEq (4.1 g/t Au, 0.3% Sb) from 178.2 m
MDDSC012	185	189	4	2.2	0.2	2.5	10.1	4.0 m @ 2.5 g/t AuEq (2.2 g/t Au, 0.2% Sb) from 185.0 m
MDDSC012	195.75	199	3.25	2.7	0.2	3.1	10.1	3.3 m @ 3.1 g/t AuEq (2.7 g/t Au, 0.2% Sb) from 195.8 m
MDDSC012	204	213.4	9.4	5.6	1.2	7.8	73.6	9.4 m @ 7.8 g/t AuEq (5.6 g/t Au, 1.2% Sb) from 204.0 m
MDDSC012 MDDSC012	226.4	227.5	1.1	1.4	0.0	1.4	1.6	1.1 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 226.4 m
MDDSC012 MDDSC013A	111.05	114.1	3.05	5.0	1.9	8.6	26.3	3.1 m @ 8.6 g/t AuEq (5.0 g/t Au, 1.9% Sb) from 111.1 m
MDDSC015A	222.7	224.5	1.8	3.5	0.2	3.8	6.8	1.8 m @ 3.8 g/t AuEq (3.5 g/t Au, 0.2% Sb) from 222.7 m
MDDSC015A MDDSC015A	231.4	235.8	4.4	0.9	1.6	3.9	17.2	4.4 m @ 3.9 g/t AuEq (0.9 g/t Au, 0.2% 3b) from 222.7 m
	1 201.4	200.0		0.5	1 1.0	5.5	11.4	ייי דיד אין איז

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
MDDSC016A	109.42	112.55	3.13	1.0	0.3	1.6	5.0	3.1 m @ 1.6 g/t AuEq (1.0 g/t Au, 0.3% Sb) from 109.4 m
MDDSC016A	115.57	117.36	1.79	1.1	1.1	3.0	5.4	1.8 m @ 3.0 g/t AuEq (1.1 g/t Au, 1.1% Sb) from 115.6 m
MDDSC016A	120.1	126.75	6.65	4.1	0.5	5.0	33.2	6.7 m @ 5.0 g/t AuEq (4.1 g/t Au, 0.5% Sb) from 120.1 m
MDDSC016A	131	132.89	1.89	0.4	0.2	0.8	1.6	1.9 m @ 0.8 g/t AuEq (0.4 g/t Au, 0.2% Sb) from 131.0 m
MDDSC016A	159.9	162.63	2.73	1.1	0.0	1.1	3.0	2.7 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 159.9 m
MDDSC016A	165.63	168.2	2.57	0.8	2.3	5.1	13.2	2.6 m @ 5.1 g/t AuEq (0.8 g/t Au, 2.3% Sb) from 165.6 m
MDDSC016A	175.5	181.35	5.85	2.6	0.3	3.1	18.0	5.8 m @ 3.1 g/t AuEq (2.6 g/t Au, 0.3% Sb) from 175.5 m
MDDSC017	242.7	243.4	0.7	14.5	0.0	14.5	10.2	0.7 m @ 14.5 g/t AuEq (14.5 g/t Au, 0.0% Sb) from 242.7 m
MDDSC017	263	264	1	1.1	2.6	5.9	5.9	1.0 m @ 5.9 g/t AuEq (1.1 g/t Au, 2.6% Sb) from 263.0 m
MDDSC018	202.3	204.1	1.8	8.2	0.9	9.8	17.6	1.8 m @ 9.8 g/t AuEq (8.2 g/t Au, 0.9% Sb) from 202.3 m
MDDSC018	208	209	1	2.5	0.0	2.5	2.5	1.0 m @ 2.5 g/t AuEq (2.5 g/t Au, 0.0% Sb) from 208.0 m
MDDSC019	52	53	1	3.5	0.1	3.6	3.6	1.0 m @ 3.6 g/t AuEq (3.5 g/t Au, 0.1% Sb) from 52.0 m
MDDSC019	113.7	114.3	0.6	0.3	1.3	2.8	1.7	0.6 m @ 2.8 g/t AuEq (0.3 g/t Au, 1.3% Sb) from 113.7 m
MDDSC019	152.2	152.9	0.7	2.1	0.0	2.1	1.5	0.7 m @ 2.1 g/t AuEq (2.1 g/t Au, 0.0% Sb) from 152.2 m
MDDSC019	160	163	3	1.0	0.0	1.1	3.3	3.0 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 160.0 m
MDDSC020	207	209	2	4.8	0.3	5.3	10.7	2.0 m @ 5.3 g/t AuEq (4.8 g/t Au, 0.3% Sb) from 207.0 m
MDDSC020	214	222	8	1.1	0.7	2.4	19.5	8.0 m @ 2.4 g/t AuEq (1.1 g/t Au, 0.7% Sb) from 214.0 m
MDDSC021	274.7	287.75	13.05	7.7	1.5	10.5	136.5	13.1 m @ 10.5 g/t AuEq (7.7 g/t Au, 1.5% Sb) from 274.7 m
MDDSC021	291.15	295.95	4.8	0.8	0.2	1.2	5.7	4.8 m @ 1.2 g/t AuEq (0.8 g/t Au, 0.2% Sb) from 291.2 m
MDDSC024	194.95	198.9	3.95	1.3	0.4	2.1	8.3	4.0 m @ 2.1 g/t AuEq (1.3 g/t Au, 0.4% Sb) from 195.0 m
MDDSC024	211.2	211.5	0.3	1.3	0.0	1.3	0.4	0.3 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 211.2 m
MDDSC025	362.52	373.7	11.18	14.4	3.9	21.6	241.5	11.2 m @ 21.6 g/t AuEq (14.4 g/t Au, 3.9% Sb) from 362.5 m
MDDSC025	381.8	383	1.2	1.3	0.0	1.4	1.7	1.2 m @ 1.4 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 381.8 m
MDDSC020	385.8	387.2	1.2	3.3	0.0	3.3	4.7	1.4 m @ 3.3 g/t AuEq (3.3 g/t Au, 0.0% Sb) from 381.8 m
MDDSC026	390	391	1	1.4	0.3	2.0	2.0	1.0 m @ 2.0 g/t AuEq (1.4 g/t Au, 0.3% Sb) from 390.0 m
MDDSC026	409.3	409.8	0.5	2.0	0.0	2.0	1.0	0.5 m @ 2.0 g/t AuEq (2.0 g/t Au, 0.0% Sb) from 409.3 m
MDDSC026	413.8	414.4	0.6	1.1	0.0	1.2	0.7	0.6 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 403.5 m
MDDSC020	413.8	440.8	3	1.7	0.4	2.4	7.3	3.0 m @ 2.4 g/t AuEq (1.7 g/t Au, 0.6% Sb) from 413.8 m
MDDSC026	437.8	440.8	4.4	1.7	0.4	2.4	10.5	4.4 m @ 2.4 g/t AuEq (1.7 g/t Au, 0.4% Sb) from 445.6 m
MDDSC026	454	454.8	0.8	1.3	0.0	1.3	1.1	0.8 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 454.0 m
MDDSC026	458.8	460.4	1.6	1.0	0.8	2.5	4.0	1.6 m @ 2.5 g/t AuEq (1.0 g/t Au, 0.8% Sb) from 458.8 m
MDDSC026	469.7	475.3	5.6	10.4	0.7	11.8	65.8	5.6 m @ 11.8 g/t AuEq (10.4 g/t Au, 0.7% Sb) from 469.7 m
MDDSC026	490	491	1	0.8	0.5	1.8	1.8	1.0 m @ 1.8 g/t AuEq (0.8 g/t Au, 0.5% Sb) from 490.0 m
SDDSC031	115.6	115.8	0.2	5.1	2.3	9.4	1.9	0.2 m @ 9.4 g/t AuEq (5.1 g/t Au, 2.3% Sb) from 115.6 m
SDDSC031	196.5	197.7	1.2	1.2	0.2	1.5	1.8	1.2 m @ 1.5 g/t AuEq (1.2 g/t Au, 0.2% Sb) from 196.5 m
SDDSC031	204.7	206.2	1.5	4.7	0.8	6.2	9.4	1.5 m @ 6.2 g/t AuEq (4.7 g/t Au, 0.8% Sb) from 204.7 m
SDDSC031	208.3	209.1	0.8	2.0	0.1	2.3	1.8	0.8 m @ 2.3 g/t AuEq (2.0 g/t Au, 0.1% Sb) from 208.3 m
SDDSC031	211.6	212.1	0.5	1.4	0.0	1.4	0.7	0.5 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 211.6 m
SDDSC031	215.6	217.6	2	1.8	0.1	2.0	4.0	2.0 m @ 2.0 g/t AuEq (1.8 g/t Au, 0.1% Sb) from 215.6 m
SDDSC031	220	228.9	8.9	6.8	1.1	9.0	79.7	8.9 m @ 9.0 g/t AuEq (6.8 g/t Au, 1.1% Sb) from 220.0 m
SDDSC031	237.7	240.1	2.4	0.7	0.0	0.8	1.9	2.4 m @ 0.8 g/t AuEq (0.7 g/t Au, 0.0% Sb) from 237.7 m
SDDSC032	0	2.2	2.2	1.0	0.0	1.1	2.3	2.2 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 0.0 m
SDDSC032	0	0.8	0.8	1.3	0.1	1.4	1.1	0.8 m @ 1.4 g/t AuEq (1.3 g/t Au, 0.1% Sb) from 0.0 m
SDDSC032	39.5	40.15	0.65	1.3	0.0	1.3	0.9	0.6 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 39.5 m
SDDSC032	56	56.4	0.4	1.3	0.0	1.3	0.5	0.4 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 56.0 m
SDDSC032	60.3	65.3	5	7.0	0.9	8.7	43.7	5.0 m @ 8.7 g/t AuEq (7.0 g/t Au, 0.9% Sb) from 60.3 m
SDDSC032	75.4	76.3	0.9	1.2	0.7	2.4	2.2	0.9 m @ 2.4 g/t AuEq (1.2 g/t Au, 0.7% Sb) from 75.4 m
SDDSC032	88	89	1	2.8	0.1	3.0	3.0	1.0 m @ 3.0 g/t AuEq (2.8 g/t Au, 0.1% Sb) from 88.0 m
SDDSC032	96	97	1	7.5	0.5	8.4	8.4	1.0 m @ 8.4 g/t AuEq (7.5 g/t Au, 0.5% Sb) from 96.0 m
SDDSC032	109.7	110.7	1	1.6	0.0	1.6	1.6	1.0 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 109.7 m
SDDSC033	115	119	4	1.8	0.2	2.2	8.8	4.0 m @ 2.2 g/t AuEq (1.8 g/t Au, 0.2% Sb) from 115.0 m
SDDSC033	122.4	122.8	0.4	0.9	0.8	2.4	0.9	0.4 m @ 2.4 g/t AuEq (0.9 g/t Au, 0.8% Sb) from 122.4 m
SDDSC033	126.4	129.2	2.8	0.7	0.0	0.7	2.1	2.8 m @ 0.7 g/t AuEq (0.7 g/t Au, 0.0% Sb) from 126.4 m
SDDSC033	132.6	133.6	1	1.8	0.4	2.5	2.5	1.0 m @ 2.5 g/t AuEq (1.8 g/t Au, 0.4% Sb) from 132.6 m
SDDSC033	136.5	144	7.5	0.7	0.0	0.8	5.9	7.5 m @ 0.8 g/t AuEq (0.7 g/t Au, 0.0% Sb) from 136.5 m
SDDSC033	148	169.5	21.5	6.4	0.5	7.3	156.0	21.5 m @ 7.3 g/t AuEq (6.4 g/t Au, 0.5% Sb) from 148.0 m
SDDSC033	171.9	173.6	1.7	2.1	0.2	2.5	4.2	1.7 m @ 2.5 g/t AuEq (2.1 g/t Au, 0.2% Sb) from 171.9 m
SDDSC033	180.6	197.4	16.8	10.7	2.3	15.0	251.7	16.8 m @ 15.0 g/t AuEq (10.7 g/t Au, 2.3% Sb) from 180.6 m
SDDSC033	201	202.9	1.9	1.7	0.0	1.7	3.2	1.9 m @ 1.7 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 201.0 m
SDDSC033	206.7	213.6	6.9	1.5	0.1	1.7	12.0	6.9 m @ 1.7 g/t AuEq (1.5 g/t Au, 0.1% Sb) from 206.7 m
SDDSC033	217	218	1	0.3	1.4	2.9	2.9	1.0 m @ 2.9 g/t AuEq (0.3 g/t Au, 1.4% Sb) from 217.0 m
SDDSC034	7	8.5	1.5	2.0	0.1	2.2	3.3	1.5 m @ 2.2 g/t AuEq (2.0 g/t Au, 0.1% Sb) from 7.0 m
	28.6	30	1.4	2.0	0.1	2.3	3.2	1.4 m @ 2.3 g/t AuEq (2.0 g/t Au, 0.1% Sb) from 28.6 m
SDDSC034								
SDDSC034 SDDSC034	43.8	48	4.2	3.6	0.1	3.8	16.1	4.2 m @ 3.8 g/t AuEq (3.6 g/t Au, 0.1% Sb) from 43.8 m
	43.8 64.5	48 65.5	4.2 1	3.6 1.0	0.1 1.0	3.8 2.8	16.1 2.8	4.2 m @ 3.8 g/t AuEq (3.6 g/t Au, 0.1% Sb) from 43.8 m 1.0 m @ 2.8 g/t AuEq (1.0 g/t Au, 1.0% Sb) from 64.5 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC034	131.2	131.5	0.3	0.0	4.8	9.1	2.7	0.3 m @ 9.1 g/t AuEq (0.0 g/t Au, 4.8% Sb) from 131.2 m
SDDSC034	145.1	146.4	1.3	1.4	0.0	1.4	1.9	1.3 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 145.1 m
SDDSC035	98.2	98.4	0.2	1.4	0.5	2.3	0.5	0.2 m @ 2.3 g/t AuEq (1.4 g/t Au, 0.5% Sb) from 98.2 m
SDDSC035	100.5	101.1	0.6	16.8	0.0	16.8	10.1	0.6 m @ 16.8 g/t AuEq (16.8 g/t Au, 0.0% Sb) from 100.5 m
SDDSC035	107.4	118	10.6	1.7	0.5	2.7	28.6	10.6 m @ 2.7 g/t AuEq (1.7 g/t Au, 0.5% Sb) from 107.4 m
SDDSC035	173	173.5	0.5	1.4	0.0	1.5	0.7	0.5 m @ 1.5 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 173.0 m
SDDSC036	160.4	160.7	0.3	7.1	0.2	7.4	2.2	0.3 m @ 7.4 g/t AuEq (7.1 g/t Au, 0.2% Sb) from 160.4 m
SDDSC036	164	172.4	8.4	1.6 1.2	0.4	2.4	20.2	8.4 m @ 2.4 g/t AuEq (1.6 g/t Au, 0.4% Sb) from 164.0 m
SDDSC036 SDDSC037	205 363	206 364	1	1.2	0.0 0.0	1.2 1.6	1.2 1.6	1.0 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 205.0 m 1.0 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 363.0 m
SDDSC037	368.6	369.6	1	0.1	0.6	1.3	1.3	1.0 m @ 1.3 g/t AuEq (0.1 g/t Au, 0.6% Sb) from 368.6 m
SDDSC038	24	25	1	1.7	0.0	1.7	1.7	1.0 m @ 1.7 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 24.0 m
SDDSC038	52.3	53.9	1.6	1.9	0.3	2.5	3.9	1.6 m @ 2.5 g/t AuEq (1.9 g/t Au, 0.3% Sb) from 52.3 m
SDDSC038	96.3	99.3	3	2.2	3.7	9.1	27.4	3.0 m @ 9.1 g/t AuEq (2.2 g/t Au, 3.7% Sb) from 96.3 m
SDDSC038	101.7	109.6	7.9	0.9	1.2	3.1	24.2	7.9 m @ 3.1 g/t AuEq (0.9 g/t Au, 1.2% Sb) from 101.7 m
SDDSC038	130	131	1	2.4	0.0	2.4	2.4	1.0 m @ 2.4 g/t AuEq (2.4 g/t Au, 0.0% Sb) from 130.0 m
SDDSC038	142.4	142.7	0.3	3.2	18.1	37.3	11.2	0.3 m @ 37.3 g/t AuEq (3.2 g/t Au, 18.1% Sb) from 142.4 m
SDDSC038	148	152.8	4.8	8.3	1.9	11.9	57.0	4.8 m @ 11.9 g/t AuEq (8.3 g/t Au, 1.9% Sb) from 148.0 m
SDDSC038	195.8	197.2	1.4	12.6	0.2	13.0	18.1	1.4 m @ 13.0 g/t AuEq (12.6 g/t Au, 0.2% Sb) from 195.8 m
SDDSC038	212.1	212.7	0.6	1.9	0.2	2.3	1.4	0.6 m @ 2.3 g/t AuEq (1.9 g/t Au, 0.2% Sb) from 212.1 m
SDDSC038	215.8	218.4	2.6	1.0	0.7	2.3	6.0	2.6 m @ 2.3 g/t AuEq (1.0 g/t Au, 0.7% Sb) from 215.8 m
SDDSC038	224.6	228.9	4.3	0.9	0.1	1.0	4.4	4.3 m @ 1.0 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 224.6 m
SDDSC038	234	242.3	8.3	2.1	0.8	3.7	30.4	8.3 m @ 3.7 g/t AuEq (2.1 g/t Au, 0.8% Sb) from 234.0 m
SDDSC038	305.5	307.8	2.3	0.3	5.1	9.9	22.7	2.3 m @ 9.9 g/t AuEq (0.3 g/t Au, 5.1% Sb) from 305.5 m
SDDSC039 SDDSC039	78.9 173	80 176	1.1 3	1.1 1.5	1.7 0.4	4.2	4.6	1.1 m @ 4.2 g/t AuEq (1.1 g/t Au, 1.7% Sb) from 78.9 m 3.0 m @ 2.2 g/t AuEq (1.5 g/t Au, 0.4% Sb) from 173.0 m
SDDSC039 SDDSC039	173	187	6.25	1.5	0.4	2.2 1.7	6.7 10.5	6.3 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 173.0 m
SDDSC039	194	204.6	10.6	10.3	3.0	15.9	168.1	10.6 m @ 15.9 g/t AuEq (10.3 g/t Au, 3.0% Sb) from 194.0 m
SDDSC039	212	212.4	0.4	2.7	0.2	3.1	1.2	0.4 m @ 3.1 g/t AuEq (2.7 g/t Au, 0.2% Sb) from 212.0 m
SDDSC039	296	296.8	0.8	0.1	2.9	5.5	4.4	0.8 m @ 5.5 g/t AuEq (0.1 g/t Au, 2.9% Sb) from 296.0 m
SDDSC040	11	12	1	3.0	0.0	3.1	3.1	1.0 m @ 3.1 g/t AuEq (3.0 g/t Au, 0.0% Sb) from 11.0 m
SDDSC040	29	30	1	1.6	0.0	1.6	1.6	1.0 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 29.0 m
SDDSC040	103.8	105	1.2	1.5	0.0	1.5	1.9	1.2 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 103.8 m
SDDSC040	112.3	112.5	0.2	1.0	2.0	4.7	0.9	0.2 m @ 4.7 g/t AuEq (1.0 g/t Au, 2.0% Sb) from 112.3 m
SDDSC040	116	117.4	1.4	2.9	0.9	4.7	6.5	1.4 m @ 4.7 g/t AuEq (2.9 g/t Au, 0.9% Sb) from 116.0 m
SDDSC040	120	125.8	5.8	5.7	0.1	5.9	34.3	5.8 m @ 5.9 g/t AuEq (5.7 g/t Au, 0.1% Sb) from 120.0 m
SDDSC040	130.2	130.7	0.5	21.2	0.9	22.9	11.4	0.5 m @ 22.9 g/t AuEq (21.2 g/t Au, 0.9% Sb) from 130.2 m
SDDSC040	243.15	261	17.85	2.2	0.3	2.8	49.7	17.9 m @ 2.8 g/t AuEq (2.2 g/t Au, 0.3% Sb) from 243.2 m
SDDSC040	264.2	265.3	1.1	6.0	3.2	12.0	13.2	1.1 m @ 12.0 g/t AuEq (6.0 g/t Au, 3.2% Sb) from 264.2 m
SDDSC040	310	311	1 2	1.0 1.9	0.0 0.4	1.1	1.1	1.0 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 310.0 m
SDDSC040 SDDSC040	318 410.7	320 413.5	2.8	0.1	1.0	2.7 1.9	5.4	2.0 m @ 2.7 g/t AuEq (1.9 g/t Au, 0.4% Sb) from 318.0 m 2.8 m @ 1.9 g/t AuEq (0.1 g/t Au, 1.0% Sb) from 410.7 m
SDDSC040 SDDSC040	410.7	413.5	0.5	4.4	2.6	9.3	4.6	0.5 m @ 9.3 g/t AuEq (4.4 g/t Au, 2.6% Sb) from 416.0 m
SDDSC040	419.4	420.5	1.1	3.0	5.9	14.2	15.6	1.1 m @ 14.2 g/t AuEq (3.0 g/t Au, 5.9% Sb) from 419.4 m
SDDSC040	425.5	428.5	3	0.5	0.1	0.7	2.1	3.0 m @ 0.7 g/t AuEq (0.5 g/t Au, 0.1% Sb) from 425.5 m
SDDSC041	73	74	1	0.3	0.5	1.2	1.2	1.0 m @ 1.2 g/t AuEq (0.3 g/t Au, 0.5% Sb) from 73.0 m
SDDSC041	77	78	1	2.3	0.0	2.3	2.3	1.0 m @ 2.3 g/t AuEq (2.3 g/t Au, 0.0% Sb) from 77.0 m
SDDSC041	82.45	82.85	0.4	2.4	1.1	4.4	1.8	0.4 m @ 4.4 g/t AuEq (2.4 g/t Au, 1.1% Sb) from 82.5 m
SDDSC041	85.3	86	0.7	1.1	0.6	2.2	1.5	0.7 m @ 2.2 g/t AuEq (1.1 g/t Au, 0.6% Sb) from 85.3 m
SDDSC042	111.9	114	2.1	1.7	0.0	1.7	3.5	2.1 m @ 1.7 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 111.9 m
SDDSC042	116.15	117.9	1.75	2.2	0.1	2.3	4.1	1.8 m @ 2.3 g/t AuEq (2.2 g/t Au, 0.1% Sb) from 116.2 m
SDDSC042	120.35	125.85	5.5	1.3	0.0	1.3	7.4	5.5 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 120.4 m
SDDSC042	137.5	143.8	6.3	4.1	0.4	4.8	30.1	6.3 m @ 4.8 g/t AuEq (4.1 g/t Au, 0.4% Sb) from 137.5 m
SDDSC043	241.4	243.9	2.5	1.3	2.3	5.6	14.0	2.5 m @ 5.6 g/t AuEq (1.3 g/t Au, 2.3% Sb) from 241.4 m
SDDSC043	248.8	253.5	4.7	2.0	0.8	3.6	16.7	4.7 m @ 3.6 g/t AuEq (2.0 g/t Au, 0.8% Sb) from 248.8 m
SDDSC044 SDDSC044	172.45 243.05	172.9 245	0.45	11.3 9.9	0.0 3.5	11.3 16.5	5.1 32.2	0.5 m @ 11.3 g/t AuEq (11.3 g/t Au, 0.0% Sb) from 172.5 m 1.9 m @ 16.5 g/t AuEq (9.9 g/t Au, 3.5% Sb) from 243.1 m
SDDSC044 SDDSC044	243.05	245	1.95	9.9 4.0	3.5 8.3	19.5	32.2	1.9 m @ 16.5 g/t AuEq (9.9 g/t Au, 3.5% Sb) from 243.1 m 1.8 m @ 19.5 g/t AuEq (4.0 g/t Au, 8.3% Sb) from 248.0 m
SDDSC044 SDDSC044	248	249.85	0.75	1.0	0.5	19.5	1.4	0.8 m @ 1.9 g/t AuEq (4.0 g/t Au, 8.5% Sb) from 248.0 m
SDDSC044 SDDSC044	236.23	265.7	0.73	0.2	0.5	1.9	0.9	0.7 m @ 1.3 g/t AuEq (0.2 g/t Au, 0.6% Sb) from 265.0 m
SDDSC044	275.4	276.1	0.7	0.7	5.5	10.9	7.7	0.7 m @ 10.9 g/t AuEq (0.7 g/t Au, 5.5% Sb) from 275.4 m
SDDSC045	98	104.45	6.45	1.8	0.0	1.9	12.0	6.5 m @ 1.9 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 98.0 m
SDDSC045	126.75	128.1	1.35	2.8	0.6	3.8	5.2	1.3 m @ 3.8 g/t AuEq (2.8 g/t Au, 0.6% Sb) from 126.8 m
SDDSC045	131.25	131.5	0.25	4.4	1.0	6.1	1.5	0.3 m @ 6.1 g/t AuEq (4.4 g/t Au, 1.0% Sb) from 131.3 m
	156.05	156.35	0.3	2.6	0.7	3.9	1.2	0.3 m @ 3.9 g/t AuEq (2.6 g/t Au, 0.7% Sb) from 156.1 m
SDDSC045	156.05	100.00		-			1	

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC045	171.1	171.4	0.3	1.6	0.0	1.6	0.5	0.3 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 171.1 m
SDDSC045	173.45	174.1	0.65	0.9	0.0	0.9	0.6	0.7 m @ 0.9 g/t AuEq (0.9 g/t Au, 0.0% Sb) from 173.5 m
SDDSC045	184.25	184.55	0.3	374.0	0.0	374.1	112.2	0.3 m @ 374.1 g/t AuEq (374.0 g/t Au, 0.0% Sb) from 184.3 m
SDDSC045	174.7	175.4	0.7	27.9	0.0	28.0	19.6	0.7 m @ 28.0 g/t AuEq (27.9 g/t Au, 0.0% Sb) from 174.7 m
SDDSC046	187.5	201.81	14.31	20.5	2.6	25.4	363.4	14.3 m @ 25.4 g/t AuEq (20.5 g/t Au, 2.6% Sb) from 187.5 m
SDDSC046	204.45	204.82	0.37	1.2	0.0	1.2	0.5	0.4 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 204.5 m
SDDSC047	192.8	199.6	6.8	1.1	0.0	1.1	7.6	6.8 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 192.8 m
SDDSC048A	449.85	450.75	0.9	2.3	0.0	2.3	2.1	0.9 m @ 2.3 g/t AuEq (2.3 g/t Au, 0.0% Sb) from 449.9 m
SDDSC048A	493.5	495.5	2	2.1	1.9	5.7	11.3	2.0 m @ 5.7 g/t AuEq (2.1 g/t Au, 1.9% Sb) from 493.5 m
SDDSC048A	499	501.25	2.25	2.3	0.4	3.0	6.9	2.3 m @ 3.0 g/t AuEq (2.3 g/t Au, 0.4% Sb) from 499.0 m
SDDSC048A	547.65	548.4	0.75	0.7	0.5	1.6	1.2	0.8 m @ 1.6 g/t AuEq (0.7 g/t Au, 0.5% Sb) from 547.7 m
SDDSC048A	580.15	580.7	0.55	0.8	0.2	1.2	0.7	0.6 m @ 1.2 g/t AuEq (0.8 g/t Au, 0.2% Sb) from 580.2 m
SDDSC048A	583	583.4	0.4	1.4	0.0	1.4	0.6	0.4 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 583.0 m
SDDSC049	185	186	1	0.8	0.4	1.5	1.5	1.0 m @ 1.5 g/t AuEq (0.8 g/t Au, 0.4% Sb) from 185.0 m
SDDSC049	195.8	196.2	0.4	0.7	14.1	27.2	10.9	0.4 m @ 27.2 g/t AuEq (0.7 g/t Au, 14.1% Sb) from 195.8 m
SDDSC049	204.4	214	9.6	9.2	2.6	14.1	135.3	9.6 m @ 14.1 g/t AuEq (9.2 g/t Au, 2.6% Sb) from 204.4 m
SDDSC049	218.4	219.3	0.9	1.5	0.1	1.7	1.6	0.9 m @ 1.7 g/t AuEq (1.5 g/t Au, 0.1% Sb) from 218.4 m
SDDSC049	251	252	1	3.8	0.0	3.8	3.8	1.0 m @ 3.8 g/t AuEq (3.8 g/t Au, 0.0% Sb) from 251.0 m
SDDSC049	255.6	256	0.4	2.0	3.9	9.2	3.7	0.4 m @ 9.2 g/t AuEq (2.0 g/t Au, 3.9% Sb) from 255.6 m
SDDSC050	322.73	323.2	0.47	0.7	0.6	1.8	0.9	0.5 m @ 1.8 g/t AuEq (0.7 g/t Au, 0.6% Sb) from 322.7 m
SDDSC050	325.95	331	5.05	4.5	0.6	5.6	28.5	5.1 m @ 5.6 g/t AuEq (4.5 g/t Au, 0.6% Sb) from 326.0 m
SDDSC050	334	335	1	5.2	1.7	8.4	8.4	1.0 m @ 8.4 g/t AuEq (5.2 g/t Au, 1.7% Sb) from 334.0 m
SDDSC050	343.53	343.85	0.32	40.7	4.9	49.8	15.9	0.3 m @ 49.8 g/t AuEq (40.7 g/t Au, 4.9% Sb) from 343.5 m
SDDSC050	346.63	349	2.37	1.1	0.1	1.2	3.0	2.4 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.1% Sb) from 346.6 m
SDDSC050	398	399.9	1.9	2.5	0.9	4.2	8.0	1.9 m @ 4.2 g/t AuEq (2.5 g/t Au, 0.9% Sb) from 398.0 m
SDDSC050	407.9	408.7	0.8	1.2	2.0	4.9	4.0	0.8 m @ 4.9 g/t AuEq (1.2 g/t Au, 2.0% Sb) from 407.9 m
SDDSC050	412.64	414.35	1.71	0.8	0.1	0.9	1.6	1.7 m @ 0.9 g/t AuEq (0.8 g/t Au, 0.1% Sb) from 412.6 m
SDDSC050	419.23	419.65	0.42	20.8	9.6	38.8	16.3	0.4 m @ 38.8 g/t AuEq (20.8 g/t Au, 9.6% Sb) from 419.2 m
SDDSC050	423.6	425.4	1.8	0.4	0.5	1.4	2.5	1.8 m @ 1.4 g/t AuEq (0.4 g/t Au, 0.5% Sb) from 423.6 m
SDDSC050	429.9	430.2	0.3	0.2	1.1	2.1	0.6	0.3 m @ 2.1 g/t AuEq (0.2 g/t Au, 1.1% Sb) from 429.9 m
SDDSC050	439.8	445.77	5.97	9.5	1.0	11.4	68.2	6.0 m @ 11.4 g/t AuEq (9.5 g/t Au, 1.0% Sb) from 439.8 m
SDDSC050	449	451	2	2.4	0.5	3.4	6.7	2.0 m @ 3.4 g/t AuEq (2.4 g/t Au, 0.5% Sb) from 449.0 m
SDDSC050	464.35	464.8	0.45	18.2	1.6	21.3	9.6	0.4 m @ 21.3 g/t AuEq (18.2 g/t Au, 1.6% Sb) from 464.4 m
SDDSC050	469.07	469.4	0.33	0.2	4.9	9.3	3.1	0.3 m @ 9.3 g/t AuEq (0.2 g/t Au, 4.9% Sb) from 469.1 m
SDDSC050	476	484.23	8.23	0.7	0.4	1.6	12.8	8.2 m @ 1.6 g/t AuEq (0.7 g/t Au, 0.4% Sb) from 476.0 m
SDDSC050	487	495	8	4.6	3.5	11.2	89.9	8.0 m @ 11.2 g/t AuEq (4.6 g/t Au, 3.5% Sb) from 487.0 m
SDDSC050	513.6	513.9	0.3	0.3	31.4	59.3	17.8	0.3 m @ 59.3 g/t AuEq (0.3 g/t Au, 31.4% Sb) from 513.6 m
SDDSC050	525.27	525.6	0.33	180.0	9.7	198.2	65.4	0.3 m @ 198.2 g/t AuEq (180.0 g/t Au, 9.7% Sb) from 525.3 m
SDDSC050	529	530	1	0.1	0.7	1.3	1.3	1.0 m @ 1.3 g/t AuEq (0.1 g/t Au, 0.7% Sb) from 529.0 m
SDDSC050	533	538.12	5.12	0.8	0.4	1.6	8.1	5.1 m @ 1.6 g/t AuEq (0.8 g/t Au, 0.4% Sb) from 533.0 m
SDDSC050	544.65	545.7	1.05	1.1	0.0	1.2	1.2	1.1 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 544.7 m
SDDSC050	549.22	549.55	0.33	42.5	0.6	43.6	14.4	0.3 m @ 43.6 g/t AuEq (42.5 g/t Au, 0.6% Sb) from 549.2 m
SDDSC050	562	565.1	3.1	0.6	0.8	2.1	6.6	3.1 m @ 2.1 g/t AuEq (0.6 g/t Au, 0.8% Sb) from 562.0 m
SDDSC050	568	573.6	5.6	4.7	3.0	10.3	57.6	5.6 m @ 10.3 g/t AuEq (4.7 g/t Au, 3.0% Sb) from 568.0 m
SDDSC050	578.85	580.05	1.2	1.4	2.3	5.7	6.9	1.2 m @ 5.7 g/t AuEq (1.4 g/t Au, 2.3% Sb) from 578.9 m
SDDSC050	583	583.3	0.3	14.6	4.3	22.6	6.8	0.3 m @ 22.6 g/t AuEq (14.6 g/t Au, 4.3% Sb) from 583.0 m
SDDSC050	585.5	586.35 590	0.85	3.4 27.3	1.1	5.4	4.6 44.0	0.9 m @ 5.4 g/t AuEq (3.4 g/t Au, 1.1% Sb) from 585.5 m
SDDSC050	589		1		8.9	44.0		1.0 m @ 44.0 g/t AuEq (27.3 g/t Au, 8.9% Sb) from 589.0 m
SDDSC050 SDDSC050	611 620	615.7 623.9	4.7 3.9	1.0 33.2	1.4 7.6	3.6 47.5	16.8 185.2	4.7 m @ 3.6 g/t AuEq (1.0 g/t Au, 1.4% Sb) from 611.0 m 3.9 m @ 47.5 g/t AuEq (33.2 g/t Au, 7.6% Sb) from 620.0 m
SDDSC050 SDDSC050	620	623.9	0.3	<u>33.2</u> 52.2	0.1	52.3	185.2	0.3 m @ 52.3 g/t AuEq (52.2 g/t Au, 7.6% Sb) from 620.0 m
				8.3				
SDDSC050	712	717	5		0.1	8.5	42.5	5.0 m @ 8.5 g/t AuEq (8.3 g/t Au, 0.1% Sb) from 712.0 m
SDDSC050	758	758.82	0.82	3.3	0.0	3.3	2.7	0.8 m @ 3.3 g/t AuEq (3.3 g/t Au, 0.0% Sb) from 758.0 m 1.0 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 768.3 m
SDDSC050	768.28	769.25	0.97	1.0	0.0	1.0	1.0	
SDDSC050 SDDSC050	793 837.2	794 840	1 2.8	1.7 12.3	0.2	2.1 12.5	2.1 34.9	1.0 m @ 2.1 g/t AuEq (1.7 g/t Au, 0.2% Sb) from 793.0 m
SDDSC050 SDDSC052	837.2	90.22	1.7	5.6	0.1	5.7	34.9 9.7	2.8 m @ 12.5 g/t AuEq (12.3 g/t Au, 0.1% Sb) from 837.2 m 1.7 m @ 5.7 g/t AuEq (5.6 g/t Au, 0.1% Sb) from 88.5 m
SDDSC052 SDDSC052	96.26	90.22	2.4	19.1	2.6	24.0	9.7 57.5	2.4 m @ 24.0 g/t AuEq (19.1 g/t Au, 0.1% Sb) from 96.3 m
								2.4 m @ 24.0 g/t AuEq (19.1 g/t Au, 2.6% Sb) from 96.3 m 2.0 m @ 2.4 g/t AuEq (1.5 g/t Au, 0.5% Sb) from 166.5 m
SDDSC052	166.5	168.5	2	1.5	0.5	2.4	4.8 26 9	
SDDSC052	171.35	179	7.65	3.3	0.1	3.5	26.9	7.7 m @ 3.5 g/t AuEq (3.3 g/t Au, 0.1% Sb) from 171.4 m
SDDSC052	183	183.9	0.9	2.7	0.0	2.7	2.4	0.9 m @ 2.7 g/t AuEq (2.7 g/t Au, 0.0% Sb) from 183.0 m
SDDSC052	210.2	213.6	3.4	21.0	1.7	24.3	82.5	3.4 m @ 24.3 g/t AuEq (21.0 g/t Au, 1.7% Sb) from 210.2 m
SDDSC053 SDDSC053	259.2	259.6	0.4	0.5	0.5	1.4	0.6	0.4 m @ 1.4 g/t AuEq (0.5 g/t Au, 0.5% Sb) from 259.2 m
SDDSC052	270.6	273.4	2.8	0.8	0.5	1.7	4.7	2.8 m @ 1.7 g/t AuEq (0.8 g/t Au, 0.5% Sb) from 270.6 m
SDDSC053	276	280	4	0.6	0.7	1.8	7.3	4.0 m @ 1.8 g/t AuEq (0.6 g/t Au, 0.7% Sb) from 276.0 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC053	307.8	308.7	0.9	1.1	0.0	1.1	1.0	0.9 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 307.8 m
SDDSC053	316	319	3	3.4	1.6	6.4	19.2	3.0 m @ 6.4 g/t AuEq (3.4 g/t Au, 1.6% Sb) from 316.0 m
SDDSC053	402.2	407	4.8	0.9	0.4	1.7	8.2	4.8 m @ 1.7 g/t AuEq (0.9 g/t Au, 0.4% Sb) from 402.2 m
SDDSC054	140	140.75	0.75	4.3	0.8	5.8	4.4	0.8 m @ 5.8 g/t AuEq (4.3 g/t Au, 0.8% Sb) from 140.0 m
SDDSC054	206.98	207.67	0.69	2.1	0.0	2.1	1.4	0.7 m @ 2.1 g/t AuEq (2.1 g/t Au, 0.0% Sb) from 207.0 m
SDDSC055	372.82	375.38	2.56	0.6	0.6	1.8	4.7	2.6 m @ 1.8 g/t AuEq (0.6 g/t Au, 0.6% Sb) from 372.8 m
SDDSC055	388.5	392.37	3.87	1.6	5.8	12.5	48.4	3.9 m @ 12.5 g/t AuEq (1.6 g/t Au, 5.8% Sb) from 388.5 m
SDDSC055	400.4	401.3	0.9	8.8	1.1	10.9	9.8	0.9 m @ 10.9 g/t AuEq (8.8 g/t Au, 1.1% Sb) from 400.4 m
SDDSC055	405.85	406.15	0.3	5.1	2.0	8.9	2.7	0.3 m @ 8.9 g/t AuEq (5.1 g/t Au, 2.0% Sb) from 405.9 m
SDDSC055	410.27	410.58	0.31	2.8	1.1	4.8	1.5	0.3 m @ 4.8 g/t AuEq (2.8 g/t Au, 1.1% Sb) from 410.3 m
SDDSC055	417.86	418.1	0.24	12.6	9.0	29.5	7.1	0.2 m @ 29.5 g/t AuEq (12.6 g/t Au, 9.0% Sb) from 417.9 m
SDDSC055	420.76	422.96	2.2	2.5	0.6	3.5	7.8	2.2 m @ 3.5 g/t AuEq (2.5 g/t Au, 0.6% Sb) from 420.8 m
SDDSC055	401.6	403	1.4	0.6	4.9	9.8	13.7	1.4 m @ 9.8 g/t AuEq (0.6 g/t Au, 4.9% Sb) from 401.6 m
SDDSC056	77	78	1	0.1	7.4	13.9	13.9	1.0 m @ 13.9 g/t AuEq (0.1 g/t Au, 7.4% Sb) from 77.0 m
SDDSC056	118	119	1	1.8	0.0	1.8	1.8	1.0 m @ 1.8 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 118.0 m
SDDSC056	133	142	9	1.6	0.6	2.8	25.3	9.0 m @ 2.8 g/t AuEq (1.6 g/t Au, 0.6% Sb) from 133.0 m
SDDSC056	150.12	150.6	0.48	6.4	0.0	6.4	3.1	0.5 m @ 6.4 g/t AuEq (6.4 g/t Au, 0.0% Sb) from 150.1 m
SDDSC056	173.18	174.4	1.22	6.7	0.3	7.3	8.8	1.2 m @ 7.3 g/t AuEq (6.7 g/t Au, 0.3% Sb) from 173.2 m
SDDSC057	328.2	329	0.8	2.5	3.2	8.5	6.8	0.8 m @ 8.5 g/t AuEq (2.5 g/t Au, 3.2% Sb) from 328.2 m
SDDSC058	233.95	234.5	0.55	0.9	0.3	1.4	0.8	0.6 m @ 1.4 g/t AuEq (0.9 g/t Au, 0.3% Sb) from 234.0 m
SDDSC059	573.2	584	10.8	10.6	0.8	12.1	131.0	10.8 m @ 12.1 g/t AuEq (10.6 g/t Au, 0.8% Sb) from 573.2 m
SDDSC059	583	584.35	1.35	29.9	0.2	30.3	40.9	1.4 m @ 30.3 g/t AuEq (29.9 g/t Au, 0.2% Sb) from 583.0 m
SDDSC060	216	216.8	0.8	1.2	0.1	1.3	1.0	0.8 m @ 1.3 g/t AuEq (1.2 g/t Au, 0.1% Sb) from 216.0 m
SDDSC060	224	224.8	0.8	1.0	0.2	1.3	1.1	0.8 m @ 1.3 g/t AuEq (1.0 g/t Au, 0.2% Sb) from 224.0 m
SDDSC061	656.8	663.3	6.5	1.3	0.1	1.5	10.0	6.5 m @ 1.5 g/t AuEq (1.3 g/t Au, 0.1% Sb) from 656.8 m
SDDSC061	689	695.1	6.1	19.0	0.0	19.0	115.8	6.1 m @ 19.0 g/t AuEq (19.0 g/t Au, 0.0% Sb) from 689.0 m
SDDSC062	273.35	276	2.65	0.7	0.0	0.8	2.1	2.6 m @ 0.8 g/t AuEq (0.7 g/t Au, 0.0% Sb) from 273.4 m
SDDSC062	281	281.8	0.8	6.1	0.0	6.1	4.9	0.8 m @ 6.1 g/t AuEq (6.1 g/t Au, 0.0% Sb) from 281.0 m
SDDSC062	291.4	292.6	1.2	1.9	0.5	2.8	3.4	1.2 m @ 2.8 g/t AuEq (1.9 g/t Au, 0.5% Sb) from 291.4 m
SDDSC062	297.3	297.5	0.2	0.6	0.7	1.8	0.4	0.2 m @ 1.8 g/t AuEq (0.6 g/t Au, 0.7% Sb) from 297.3 m
SDDSC062	306	312	6	0.9	0.7	2.2	13.4	6.0 m @ 2.2 g/t AuEq (0.9 g/t Au, 0.7% Sb) from 306.0 m
SDDSC063	25.2	26.7	1.5	5.0	1.0	6.9	10.4	1.5 m @ 6.9 g/t AuEq (5.0 g/t Au, 1.0% Sb) from 25.2 m
SDDSC064	715.75	716.1	0.35	161.0	2.5	165.6	58.0	0.4 m @ 165.6 g/t AuEq (161.0 g/t Au, 2.5% Sb) from 715.8 m
SDDSC064	725.75	726	0.25	15.6	0.4	16.4	4.1	0.3 m @ 16.4 g/t AuEq (15.6 g/t Au, 0.4% Sb) from 725.8 m
SDDSC064	735	735.85	0.85	0.3	0.5	1.1	0.9	0.9 m @ 1.1 g/t AuEq (0.3 g/t Au, 0.5% Sb) from 735.0 m
SDDSC064	743	744	1	1.0	0.1	1.1	1.1	1.0 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.1% Sb) from 743.0 m
SDDSC064	747	751	4	0.5	0.0	0.6	2.4	4.0 m @ 0.6 g/t AuEq (0.5 g/t Au, 0.0% Sb) from 747.0 m
SDDSC064	756.85	758	1.15	0.9	0.2	1.3	1.5	1.1 m @ 1.3 g/t AuEq (0.9 g/t Au, 0.2% Sb) from 756.9 m
SDDSC064	760.85	762.35	1.5	1.4	0.5	2.3	3.4	1.5 m @ 2.3 g/t AuEq (1.4 g/t Au, 0.5% Sb) from 760.9 m
SDDSC064 SDDSC064	813.06	814	0.94	1.5 1.8	0.0	1.5 2.0	1.4	0.9 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 813.1 m
	861.02	861.5		2.1		2.0	1.0	0.5 m @ 2.0 g/t AuEq (1.8 g/t Au, 0.1% Sb) from 861.0 m
SDDSC064 SDDSC064	881.15 889.92	884.45 890.78	3.3 0.86	159.1	0.1	159.2	7.4 136.9	3.3 m @ 2.3 g/t AuEq (2.1 g/t Au, 0.1% Sb) from 881.2 m 0.9 m @ 159.2 g/t AuEq (159.1 g/t Au, 0.1% Sb) from 889.9 m
SDDSC064	906.82	907.84	1.02	5.4	1.9	9.0	9.1	1.0 m @ 9.0 g/t AuEq (5.4 g/t Au, 1.9% Sb) from 906.8 m
SDDSC064	912.65	913.96	1.31	1.6	0.4	2.4	3.2	1.3 m @ 2.4 g/t AuEq (1.6 g/t Au, 0.4% Sb) from 912.7 m
SDDSC064	917.7	918.7	1.51	1.0	0.0	1.1	1.1	1.0 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 917.7 m
SDDSC064	925.12	925.45	0.33	0.4	0.4	1.1	0.4	0.3 m @ 1.1 g/t AuEq (0.4 g/t Au, 0.4% Sb) from 925.1 m
SDDSC064	927.95	928.52	0.57	1.0	0.0	1.0	0.6	0.6 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 928.0 m
SDDSC066	240.14	240.65	0.51	8.0	0.0	8.0	4.1	0.5 m @ 8.0 g/t AuEq (8.0 g/t Au, 0.0% Sb) from 240.1 m
SDDSC066	243.56	243.83	0.27	4.3	8.3	19.9	5.4	0.3 m @ 19.9 g/t AuEq (4.3 g/t Au, 8.3% Sb) from 243.6 m
SDDSC066	246.58	248.01	1.43	0.8	0.0	0.9	1.2	1.4 m @ 0.9 g/t AuEq (0.8 g/t Au, 0.0% Sb) from 246.6 m
SDDSC066	289.77	290.2	0.43	2.2	0.0	2.2	1.0	0.4 m @ 2.2 g/t AuEq (2.2 g/t Au, 0.0% Sb) from 289.8 m
SDDSC066	297.15	297.37	0.22	25.4	5.0	34.7	7.6	0.2 m @ 34.7 g/t AuEq (25.4 g/t Au, 5.0% Sb) from 297.2 m
SDDSC066	306.2	313.27	7.07	6.0	1.5	8.9	63.1	7.1 m @ 8.9 g/t AuEq (6.0 g/t Au, 1.5% Sb) from 306.2 m
SDDSC066	319.37	319.55	0.18	1.2	0.0	1.2	0.2	0.2 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 319.4 m
SDDSC066	386.9	387.2	0.3	4.2	0.0	4.2	1.2	0.3 m @ 4.2 g/t AuEq (4.2 g/t Au, 0.0% Sb) from 386.9 m
SDDSC066	402.14	409.11	6.97	4.2	0.9	5.9	40.9	7.0 m @ 5.9 g/t AuEq (4.2 g/t Au, 0.9% Sb) from 402.1 m
SDDSC066	431.82	436.27	4.45	1.3	0.1	1.6	7.0	4.4 m @ 1.6 g/t AuEq (1.3 g/t Au, 0.1% Sb) from 431.8 m
SDDSC066	448	449	1	2.0	0.1	2.2	2.2	1.0 m @ 2.2 g/t AuEq (2.0 g/t Au, 0.1% Sb) from 448.0 m
SDDSC066	465.15	465.45	0.3	1.0	0.1	1.1	0.3	0.3 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.1% Sb) from 465.2 m
SDDSC066	474.75	475.2	0.45	0.9	0.5	1.8	0.8	0.4 m @ 1.8 g/t AuEq (0.9 g/t Au, 0.5% Sb) from 474.8 m
			0.63	2.8	0.6	3.9	2.4	0.6 m @ 3.9 g/t AuEq (2.8 g/t Au, 0.6% Sb) from 477.8 m
SDDSC066	477.82	478.45	0.00					
SDDSC066 SDDSC066	477.82 491.45	478.45	3.1	1.0	0.2	1.4	4.2	3.1 m @ 1.4 g/t AuEq (1.0 g/t Au, 0.2% Sb) from 491.5 m
					0.2 1.7	1.4 5.4	4.2 6.2	3.1 m @ 1.4 g/t AuEq (1.0 g/t Au, 0.2% Sb) from 491.5 m 1.1 m @ 5.4 g/t AuEq (2.1 g/t Au, 1.7% Sb) from 505.9 m
SDDSC066	491.45	494.55	3.1	1.0				

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC066	533.5	533.9	0.4	1.2	0.1	1.5	0.6	0.4 m @ 1.5 g/t AuEq (1.2 g/t Au, 0.1% Sb) from 533.5 m
SDDSC066	538	538.75	0.75	13.1	0.4	13.8	10.3	0.8 m @ 13.8 g/t AuEq (13.1 g/t Au, 0.4% Sb) from 538.0 m
SDDSC066	543.51	545.19	1.68	147.1	13.7	172.8	290.3	1.7 m @ 172.8 g/t AuEq (147.1 g/t Au, 13.7% Sb) from 543.5 m
SDDSC066	549.12	551.12	2	4.2	1.2	6.4	12.8	2.0 m @ 6.4 g/t AuEq (4.2 g/t Au, 1.2% Sb) from 549.1 m
SDDSC067	415.72	416.3	0.58	66.2	47.5	155.4	90.1	0.6 m @ 155.4 g/t AuEq (66.2 g/t Au, 47.5% Sb) from 415.7 m
SDDSC067	425.2	426.05	0.85	1.4	0.4	2.2	1.9	0.9 m @ 2.2 g/t AuEq (1.4 g/t Au, 0.4% Sb) from 425.2 m
SDDSC067	428.78	430.17	1.39	1.6	0.7	2.9	4.1	1.4 m @ 2.9 g/t AuEq (1.6 g/t Au, 0.7% Sb) from 428.8 m
SDDSC067	463.59	464.8	1.21	2.1	0.1	2.2	2.7	1.2 m @ 2.2 g/t AuEq (2.1 g/t Au, 0.1% Sb) from 463.6 m
SDDSC068	987.7	988	0.3	1.3	0.0	1.3	0.4	0.3 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 987.7 m
SDDSC068	1010.4	1020	9.6	1.9	0.1	2.0	19.7	9.6 m @ 2.0 g/t AuEq (1.9 g/t Au, 0.1% Sb) from 1,010.4 m
SDDSC069	294.35	296.45	2.1	5.0	0.7	6.4	13.5	2.1 m @ 6.4 g/t AuEq (5.0 g/t Au, 0.7% Sb) from 294.4 m
SDDSC069 SDDSC069	299.96 308	300.87 313.5	0.91	1.5 1.1	0.0	1.5 1.5	1.3 8.1	0.9 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 300.0 m
SDDSC009	714	715	5.5	1.1	0.2	1.5	1.2	5.5 m @ 1.5 g/t AuEq (1.1 g/t Au, 0.2% Sb) from 308.0 m 1.0 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 714.0 m
SDDSC070	766.8	767.7	0.9	11.5	0.0	11.5	10.4	0.9 m @ 11.5 g/t AuEq (11.5 g/t Au, 0.0% Sb) from 766.8 m
SDDSC071	270	273	3	3.6	2.7	8.7	26.1	3.0 m @ 8.7 g/t AuEq (3.6 g/t Au, 2.7% Sb) from 270.0 m
SDDSC071	276.15	277.1	0.95	2.9	0.7	4.2	4.0	1.0 m @ 4.2 g/t AuEq (2.9 g/t Au, 0.7% Sb) from 276.2 m
SDDSC071	281.35	282.5	1.15	1.9	2.0	5.6	6.5	1.1 m @ 5.6 g/t AuEq (1.9 g/t Au, 2.0% Sb) from 281.4 m
SDDSC071	286	289.3	3.3	0.9	0.2	1.2	4.0	3.3 m @ 1.2 g/t AuEq (0.9 g/t Au, 0.2% Sb) from 286.0 m
SDDSC072	214	214.74	0.74	2.1	0.1	2.3	1.7	0.7 m @ 2.3 g/t AuEq (2.1 g/t Au, 0.1% Sb) from 214.0 m
SDDSC072	223.76	224.32	0.56	1.6	0.3	2.1	1.2	0.6 m @ 2.1 g/t AuEq (1.6 g/t Au, 0.3% Sb) from 223.8 m
SDDSC075	227.4	228.2	0.8	1.9	0.3	2.5	2.0	0.8 m @ 2.5 g/t AuEq (1.9 g/t Au, 0.3% Sb) from 227.4 m
SDDSC076	227	228	1	0.9	0.2	1.4	1.4	1.0 m @ 1.4 g/t AuEq (0.9 g/t Au, 0.2% Sb) from 227.0 m
SDDSC076	238	239	1	2.0	0.1	2.1	2.1	1.0 m @ 2.1 g/t AuEq (2.0 g/t Au, 0.1% Sb) from 238.0 m
SDDSC077B	374.75	379.95	5.2	1.1	0.2	1.4	7.5	5.2 m @ 1.4 g/t AuEq (1.1 g/t Au, 0.2% Sb) from 374.8 m
SDDSC077B	386.91	387.24	0.33	0.8	0.3	1.4	0.5	0.3 m @ 1.4 g/t AuEq (0.8 g/t Au, 0.3% Sb) from 386.9 m
SDDSC077B	392.16	396.25	4.09	19.0	3.2	25.0	102.4	4.1 m @ 25.0 g/t AuEq (19.0 g/t Au, 3.2% Sb) from 392.2 m
SDDSC077B	404.6	404.85	0.25	11.3	4.1	19.0	4.8	0.3 m @ 19.0 g/t AuEq (11.3 g/t Au, 4.1% Sb) from 404.6 m
SDDSC077B	407.65	408	0.35	574.0	12.4	597.3	209.1	0.4 m @ 597.3 g/t AuEq (574.0 g/t Au, 12.4% Sb) from 407.7 m
SDDSC077B	411.64	412.09	0.45	1.6	0.1	1.7	0.8	0.4 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.1% Sb) from 411.6 m
SDDSC077B	417	418	1	1.0	0.1	1.1	1.1	1.0 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.1% Sb) from 417.0 m
SDDSC077B	422.08	423.6	1.52	39.7	2.1	43.7	66.5	1.5 m @ 43.7 g/t AuEq (39.7 g/t Au, 2.1% Sb) from 422.1 m
SDDSC077B	426.75	428.58	1.83	4.2	0.9	6.0	10.9	1.8 m @ 6.0 g/t AuEq (4.2 g/t Au, 0.9% Sb) from 426.8 m
SDDSC077B	445.15	447	1.85	50.6	22.7	93.2	172.5	1.9 m @ 93.2 g/t AuEq (50.6 g/t Au, 22.7% Sb) from 445.2 m
SDDSC077B SDDSC077B	449.74	450.01 460.2	0.27	12.1 3.2	26.5 0.1	61.9 3.5	16.7	0.3 m @ 61.9 g/t AuEq (12.1 g/t Au, 26.5% Sb) from 449.7 m
SDDSC077B	458.7 479.29	480.2	1.5 2.43	0.6	0.1	1.5	5.2 3.7	1.5 m @ 3.5 g/t AuEq (3.2 g/t Au, 0.1% Sb) from 458.7 m 2.4 m @ 1.5 g/t AuEq (0.6 g/t Au, 0.5% Sb) from 479.3 m
SDDSC077B	479.29	488.89	4.89	3.4	0.3	3.9	19.1	4.9 m @ 3.9 g/t AuEq (3.4 g/t Au, 0.3% Sb) from 484.0 m
SDDSC077B	491.1	501.5	10.4	5.6	0.9	7.3	75.6	10.4 m @ 7.3 g/t AuEq (5.6 g/t Au, 0.9% Sb) from 491.1 m
SDDSC077B	506.55	509.7	3.15	0.9	0.1	1.1	3.5	3.1 m @ 1.1 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 506.6 m
SDDSC077B	519.25	521.8	2.55	1.4	0.9	3.0	7.7	2.5 m @ 3.0 g/t AuEq (1.4 g/t Au, 0.9% Sb) from 519.3 m
SDDSC077B	524.25	536.16	11.91	2.1	0.9	3.7	44.4	11.9 m @ 3.7 g/t AuEq (2.1 g/t Au, 0.9% Sb) from 524.3 m
SDDSC077B	544.85	546.25	1.4	3.4	0.1	3.6	5.1	1.4 m @ 3.6 g/t AuEq (3.4 g/t Au, 0.1% Sb) from 544.9 m
SDDSC077B	553.7	559	5.3	0.7	0.2	1.0	5.3	5.3 m @ 1.0 g/t AuEq (0.7 g/t Au, 0.2% Sb) from 553.7 m
SDDSC077B	562.85	563.1	0.25	0.0	0.9	1.6	0.4	0.3 m @ 1.6 g/t AuEq (0.0 g/t Au, 0.9% Sb) from 562.9 m
SDDSC077B	568.43	568.5	0.07	0.1	17.0	32.1	2.2	0.1 m @ 32.1 g/t AuEq (0.1 g/t Au, 17.0% Sb) from 568.4 m
SDDSC077B	573.85	576.6	2.75	6.1	10.8	26.4	72.7	2.8 m @ 26.4 g/t AuEq (6.1 g/t Au, 10.8% Sb) from 573.9 m
SDDSC077B	579.08	579.25	0.17	0.9	0.4	1.6	0.3	0.2 m @ 1.6 g/t AuEq (0.9 g/t Au, 0.4% Sb) from 579.1 m
SDDSC077B	614.12	614.4	0.28	2.3	1.2	4.6	1.3	0.3 m @ 4.6 g/t AuEq (2.3 g/t Au, 1.2% Sb) from 614.1 m
SDDSC077B	700.14	701.2	1.06	12.1	0.7	13.4	14.2	1.1 m @ 13.4 g/t AuEq (12.1 g/t Au, 0.7% Sb) from 700.1 m
SDDSC077B	737.12	740.74	3.62	391.9	0.8	393.4	1424.2	3.6 m @ 393.4 g/t AuEq (391.9 g/t Au, 0.8% Sb) from 737.1 m
SDDSC077B	746.77	747.07	0.3	4.9	0.0	4.9	1.5	0.3 m @ 4.9 g/t AuEq (4.9 g/t Au, 0.0% Sb) from 746.8 m
SDDSC077B	752.4	752.7	0.3	11.7	0.0	11.7	3.5	0.3 m @ 11.7 g/t AuEq (11.7 g/t Au, 0.0% Sb) from 752.4 m
SDDSC077B	777.25	778.35	1.1	1.6	0.0	1.6	1.8	1.1 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 777.3 m
SDDSC077B	431.85	436	4.15	1.1	0.1	1.4	5.8	4.1 m @ 1.4 g/t AuEq (1.1 g/t Au, 0.1% Sb) from 431.9 m
SDDSC078	187	188 106 F	1	0.1	0.9	1.9	1.9	1.0 m @ 1.9 g/t AuEq (0.1 g/t Au, 0.9% Sb) from 187.0 m
SDDSC078	190.9 202.6	196.5	5.6	8.4	1.3	10.8	60.7	5.6 m @ 10.8 g/t AuEq (8.4 g/t Au, 1.3% Sb) from 190.9 m
SDDSC078	203.6	210.05	6.45	4.0	0.3	4.5 5 9	29.2 5 9	6.5 m @ 4.5 g/t AuEq (4.0 g/t Au, 0.3% Sb) from 203.6 m
SDDSC078 SDDSC078	213 246.42	214 247.29	1 0.87	1.0 7.0	2.6 0.0	5.9 7.0	5.9 6.1	1.0 m @ 5.9 g/t AuEq (1.0 g/t Au, 2.6% Sb) from 213.0 m 0.9 m @ 7.0 g/t AuEq (7.0 g/t Au, 0.0% Sb) from 246.4 m
SDDSC078 SDDSC078	246.42	247.29	2.1	0.4	1.3	2.9	6.0	0.9 m @ 7.0 g/t AuEq (7.0 g/t Au, 0.0% Sb) from 246.4 m 2.1 m @ 2.9 g/t AuEq (0.4 g/t Au, 1.3% Sb) from 249.9 m
SDDSC078	249.9	264	4	27.7	0.3	2.9	112.9	4.0 m @ 28.2 g/t AuEq (27.7 g/t Au, 0.3% Sb) from 260.0 m
20020010	200		0.7	1.0	0.3	1.1	0.8	0.7 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 267.2 m
	267 22	267 92					0.0	
SDDSC078	267.23 271.45	267.93 273.4					2.6	
	267.23 271.45 277.73	267.93 273.4 278.12	0.7 1.95 0.39	0.5	0.4	1.3 1.7	2.6 0.7	1.9 m @ 1.3 g/t AuEq (0.5 g/t Au, 0.4% Sb) from 271.5 m 0.4 m @ 1.7 g/t AuEq (1.1 g/t Au, 0.3% Sb) from 277.7 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC078	286.1	286.9	0.8	1.4	0.0	1.4	1.1	0.8 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 286.1 m
SDDSC078	297.15	297.85	0.7	0.9	0.3	1.5	1.1	0.7 m @ 1.5 g/t AuEq (0.9 g/t Au, 0.3% Sb) from 297.2 m
SDDSC078	392.75	395	2.25	9.4	4.7	18.2	40.9	2.3 m @ 18.2 g/t AuEq (9.4 g/t Au, 4.7% Sb) from 392.8 m
SDDSC079	555.45	556.91	1.46	1.3	0.3	1.9	2.7	1.5 m @ 1.9 g/t AuEq (1.3 g/t Au, 0.3% Sb) from 555.5 m
SDDSC079	567.05	573.35	6.3	3.0	0.8	4.4	27.9	6.3 m @ 4.4 g/t AuEq (3.0 g/t Au, 0.8% Sb) from 567.1 m
SDDSC080 SDDSC080	300 315	308 318.9	8 3.9	5.0 2.5	0.2 0.5	5.4 3.5	43.1 13.5	8.0 m @ 5.4 g/t AuEq (5.0 g/t Au, 0.2% Sb) from 300.0 m 3.9 m @ 3.5 g/t AuEq (2.5 g/t Au, 0.5% Sb) from 315.0 m
SDDSC080	273	274	1	1.5	0.0	1.5	1.5	1.0 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 273.0 m
SDDSC081	283.4	283.86	0.46	0.5	2.6	5.3	2.5	0.5 m @ 5.3 g/t AuEq (0.5 g/t Au, 2.6% Sb) from 283.4 m
SDDSC081	288.99	289.65	0.66	52.3	14.5	79.6	52.5	0.7 m @ 79.6 g/t AuEq (52.3 g/t Au, 14.5% Sb) from 289.0 m
SDDSC081	293.47	295.9	2.43	2.2	0.7	3.6	8.7	2.4 m @ 3.6 g/t AuEq (2.2 g/t Au, 0.7% Sb) from 293.5 m
SDDSC082	413.63	415.35	1.72	230.6	9.9	249.1	428.5	1.7 m @ 249.1 g/t AuEq (230.6 g/t Au, 9.9% Sb) from 413.6 m
SDDSC082	417.4	419	1.6	500.3	0.1	500.5	800.8	1.6 m @ 500.5 g/t AuEq (500.3 g/t Au, 0.1% Sb) from 417.4 m
SDDSC082	423.75	424.24	0.49	1.7	0.0	1.7	0.8	0.5 m @ 1.7 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 423.8 m
SDDSC082	435.85	438.75	2.9	0.5	0.0	0.5	1.4	2.9 m @ 0.5 g/t AuEq (0.5 g/t Au, 0.0% Sb) from 435.9 m
SDDSC082	471.7	472	0.3	10.9	0.0	11.0	3.3	0.3 m @ 11.0 g/t AuEq (10.9 g/t Au, 0.0% Sb) from 471.7 m
SDDSC082	480.6	481.55	0.95	42.3	0.4	43.0	40.8	0.9 m @ 43.0 g/t AuEq (42.3 g/t Au, 0.4% Sb) from 480.6 m
SDDSC082 SDDSC082	487.9 493.25	488.35 494.75	0.45	1.4 2.7	0.3 0.0	1.9 2.7	0.9	0.5 m @ 1.9 g/t AuEq (1.4 g/t Au, 0.3% Sb) from 487.9 m
SDDSC082 SDDSC082	493.25 502	502.35	0.35	2.7	0.0	2.7	0.8	1.5 m @ 2.7 g/t AuEq (2.7 g/t Au, 0.0% Sb) from 493.3 m 0.4 m @ 2.2 g/t AuEq (2.1 g/t Au, 0.0% Sb) from 502.0 m
SDDSC082	506.25	502.55	0.85	1.0	0.0	1.1	0.9	0.9 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 506.3 m
SDDSC082	515.2	515.65	0.45	18.7	0.1	18.8	8.5	0.4 m @ 18.8 g/t AuEq (18.7 g/t Au, 0.1% Sb) from 515.2 m
SDDSC082	517.8	528	10.2	1.6	0.3	2.2	22.7	10.2 m @ 2.2 g/t AuEq (1.6 g/t Au, 0.3% Sb) from 517.8 m
SDDSC082	532	533.8	1.8	3.3	0.5	4.3	7.7	1.8 m @ 4.3 g/t AuEq (3.3 g/t Au, 0.5% Sb) from 532.0 m
SDDSC082	537.8	563.1	25.3	2.4	0.4	3.1	78.7	25.3 m @ 3.1 g/t AuEq (2.4 g/t Au, 0.4% Sb) from 537.8 m
SDDSC082	565.75	574.7	8.95	14.6	1.0	16.5	147.9	9.0 m @ 16.5 g/t AuEq (14.6 g/t Au, 1.0% Sb) from 565.8 m
SDDSC082	588	592.25	4.25	71.5	0.4	72.3	307.4	4.3 m @ 72.3 g/t AuEq (71.5 g/t Au, 0.4% Sb) from 588.0 m
SDDSC082	629	630	1	3.5	0.0	3.5	3.5	1.0 m @ 3.5 g/t AuEq (3.5 g/t Au, 0.0% Sb) from 629.0 m
SDDSC082	638	639.05	1.05	1.0	0.2	1.3	1.4	1.0 m @ 1.3 g/t AuEq (1.0 g/t Au, 0.2% Sb) from 638.0 m
SDDSC082	641.15	643.7	2.55	50.9	0.0	50.9	129.8	2.6 m @ 50.9 g/t AuEq (50.9 g/t Au, 0.0% Sb) from 641.2 m
SDDSC082 SDDSC082	654 658.9	655 660.5	1	11.7 39.3	0.0 5.9	11.8 50.4	11.8 80.6	1.0 m @ 11.8 g/t AuEq (11.7 g/t Au, 0.0% Sb) from 654.0 m 1.6 m @ 50.4 g/t AuEq (39.3 g/t Au, 5.9% Sb) from 658.9 m
SDDSC082 SDDSC082	664.6	668	3.4	0.8	0.1	0.9	3.1	3.4 m @ 0.9 g/t AuEq (0.8 g/t Au, 0.1% Sb) from 664.6 m
SDDSC082	672	673.9	1.9	5.0	3.3	11.2	21.2	1.9 m @ 11.2 g/t AuEq (5.0 g/t Au, 3.3% Sb) from 672.0 m
SDDSC082	695	699	4	5.1	0.1	5.3	21.3	4.0 m @ 5.3 g/t AuEq (5.1 g/t Au, 0.1% Sb) from 695.0 m
SDDSC082	712.1	713	0.9	8.7	0.1	8.9	8.0	0.9 m @ 8.9 g/t AuEq (8.7 g/t Au, 0.1% Sb) from 712.1 m
SDDSC082	742.8	745.1	2.3	32.9	4.2	40.8	93.8	2.3 m @ 40.8 g/t AuEq (32.9 g/t Au, 4.2% Sb) from 742.8 m
SDDSC082	842	843	1	18.3	0.7	19.7	19.7	1.0 m @ 19.7 g/t AuEq (18.3 g/t Au, 0.7% Sb) from 842.0 m
SDDSC082	854.22	854.6	0.38	49.6	0.0	49.6	18.9	0.4 m @ 49.6 g/t AuEq (49.6 g/t Au, 0.0% Sb) from 854.2 m
SDDSC082	864.4	864.84	0.44	1.1	0.0	1.2	0.5	0.4 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 864.4 m
SDDSC082	962	962.35	0.35	1.2	0.0	1.2	0.4	0.4 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 962.0 m
SDDSC082	965.58	967.8	2.22	0.8 18.4	0.0 0.0	0.8	1.8	2.2 m @ 0.8 g/t AuEq (0.8 g/t Au, 0.0% Sb) from 965.6 m
SDDSC082 SDDSC082	995.4 1037.6	995.7 1037.7	0.3	24.3	0.0	18.4 24.3	5.5 2.4	0.3 m @ 18.4 g/t AuEq (18.4 g/t Au, 0.0% Sb) from 995.4 m 0.1 m @ 24.3 g/t AuEq (24.3 g/t Au, 0.0% Sb) from 1,037.6 m
SDDSC082	1064.45	1065.04	0.59	16.4	2.3	20.7	12.2	0.6 m @ 20.7 g/t AuEq (16.4 g/t Au, 2.3% Sb) from 1,064.5 m
SDDSC084	228.67	229.2	0.53	4.1	0.0	4.1	2.2	0.5 m @ 4.1 g/t AuEq (4.1 g/t Au, 0.0% Sb) from 228.7 m
SDDSC084	245.75	246.85	1.1	6.3	0.0	6.3	6.9	1.1 m @ 6.3 g/t AuEq (6.3 g/t Au, 0.0% Sb) from 245.8 m
SDDSC085	634.56	634.87	0.31	6.8	0.9	8.5	2.6	0.3 m @ 8.5 g/t AuEq (6.8 g/t Au, 0.9% Sb) from 634.6 m
SDDSC085	641	641.68	0.68	0.7	1.0	2.7	1.8	0.7 m @ 2.7 g/t AuEq (0.7 g/t Au, 1.0% Sb) from 641.0 m
SDDSC085	718.05	720.45	2.4	0.7	0.1	1.0	2.4	2.4 m @ 1.0 g/t AuEq (0.7 g/t Au, 0.1% Sb) from 718.1 m
SDDSC085	723.4	723.85	0.45	1.7	0.0	1.8	0.8	0.5 m @ 1.8 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 723.4 m
SDDSC085	727.55	728	0.45	1.4	0.1	1.6	0.7	0.5 m @ 1.6 g/t AuEq (1.4 g/t Au, 0.1% Sb) from 727.6 m
SDDSC085	737.8	738.1	0.3	1.5	0.8	2.9	0.9	0.3 m @ 2.9 g/t AuEq (1.5 g/t Au, 0.8% Sb) from 737.8 m
SDDSC085	746.75	747.3	0.55	0.3	0.6	1.4	0.7	0.5 m @ 1.4 g/t AuEq (0.3 g/t Au, 0.6% Sb) from 746.8 m
SDDSC085	756.5	756.96	0.46	0.5	0.3	1.1	0.5	0.5 m @ 1.1 g/t AuEq (0.5 g/t Au, 0.3% Sb) from 756.5 m
SDDSC085 SDDSC086	767.42 252.7	767.9 255.5	0.48 2.8	0.8 4.4	1.0 1.9	2.7 8.0	1.3 22.4	0.5 m @ 2.7 g/t AuEq (0.8 g/t Au, 1.0% Sb) from 767.4 m 2.8 m @ 8.0 g/t AuEq (4.4 g/t Au, 1.9% Sb) from 252.7 m
SDDSC086	266.5	269.6	3.1	20.6	0.4	21.4	66.3	2.8 m @ 8.0 g/t Aueq (4.4 g/t Au, 1.9% Sb) from 252.7 m 3.1 m @ 21.4 g/t AuEq (20.6 g/t Au, 0.4% Sb) from 266.5 m
SDDSC080 SDDSC087	2200.5	223.66	0.75	12.8	0.4	12.8	9.6	0.8 m @ 12.8 g/t AuEq (12.8 g/t Au, 0.4% Sb) from 220.9 m
SDDSC087	230.28	232.18	1.9	2.8	0.1	3.1	5.8	1.9 m @ 3.1 g/t AuEq (12.8 g/t Au, 0.0% Sb) from 222.5 m 1.9 m @ 3.1 g/t AuEq (2.8 g/t Au, 0.1% Sb) from 230.3 m
SDDSC087	238.55	238.7	0.15	0.7	4.1	8.4	1.3	0.1 m @ 8.4 g/t AuEq (0.7 g/t Au, 4.1% Sb) from 238.6 m
SDDSC089	334.05	335.58	1.53	2.3	0.0	2.3	3.5	1.5 m @ 2.3 g/t AuEq (2.3 g/t Au, 0.0% Sb) from 334.1 m
SDDSC090	342.9	343.2	0.3	1.7	0.5	2.6	0.8	0.3 m @ 2.6 g/t AuEq (1.7 g/t Au, 0.5% Sb) from 342.9 m
SDDSC090	346.9	356.7	9.8	4.0	0.4	4.8	46.6	9.8 m @ 4.8 g/t AuEq (4.0 g/t Au, 0.4% Sb) from 346.9 m
SDDSC090	402	403	1	0.5	0.3	1.0	1.0	1.0 m @ 1.0 g/t AuEq (0.5 g/t Au, 0.3% Sb) from 402.0 m
SDDSC091	417	421.9	4.9	1.2	0.1	1.4	7.0	4.9 m @ 1.4 g/t AuEq (1.2 g/t Au, 0.1% Sb) from 417.0 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC091	430	450	20	62.7	0.5	63.7	1274.5	20.0 m @ 63.7 g/t AuEq (62.7 g/t Au, 0.5% Sb) from 430.0 m
SDDSC092	303.95	304.25	0.3	3.3	2.4	7.9	2.4	0.3 m @ 7.9 g/t AuEq (3.3 g/t Au, 2.4% Sb) from 304.0 m
SDDSC092	308	309	1	0.4	1.2	2.6	2.6	1.0 m @ 2.6 g/t AuEq (0.4 g/t Au, 1.2% Sb) from 308.0 m
SDDSC092	314	315	1	4.5	0.4	5.2	5.2	1.0 m @ 5.2 g/t AuEq (4.5 g/t Au, 0.4% Sb) from 314.0 m
SDDSC092	318	323	5	1.1	0.3	1.6	8.0	5.0 m @ 1.6 g/t AuEq (1.1 g/t Au, 0.3% Sb) from 318.0 m
SDDSC092	326.9	328.65	1.75	0.6	1.2	2.9	5.2	1.8 m @ 2.9 g/t AuEq (0.6 g/t Au, 1.2% Sb) from 326.9 m
SDDSC092	331.1	331.6	0.5	0.2	1.0	2.2	1.1	0.5 m @ 2.2 g/t AuEq (0.2 g/t Au, 1.0% Sb) from 331.1 m
SDDSC092	335.62	336.95	1.33	3.7	1.4	6.4	8.5	1.3 m @ 6.4 g/t AuEq (3.7 g/t Au, 1.4% Sb) from 335.6 m
SDDSC092	339.57	342.13	2.56	1.3	0.2	1.6	4.1	2.6 m @ 1.6 g/t AuEq (1.3 g/t Au, 0.2% Sb) from 339.6 m
SDDSC092	344.35	345.82	1.47	4.0	0.4	4.7	6.9	1.5 m @ 4.7 g/t AuEq (4.0 g/t Au, 0.4% Sb) from 344.4 m
SDDSC092	351.3	351.6	0.3	0.8	0.9	2.4	0.7	0.3 m @ 2.4 g/t AuEq (0.8 g/t Au, 0.9% Sb) from 351.3 m
SDDSC092	396.6	398.3	1.7	0.7	1.2	2.9	4.9	1.7 m @ 2.9 g/t AuEq (0.7 g/t Au, 1.2% Sb) from 396.6 m
SDDSC092	400.4	402.85	2.45	1.4	2.5	6.2	15.1	2.5 m @ 6.2 g/t AuEq (1.4 g/t Au, 2.5% Sb) from 400.4 m
SDDSC092	408.3	409.4	1.1	2.6	1.4	5.2	5.8	1.1 m @ 5.2 g/t AuEq (2.6 g/t Au, 1.4% Sb) from 408.3 m
SDDSC092	411.98	412.3	0.32	29.0	18.8	64.3	20.6	0.3 m @ 64.3 g/t AuEq (29.0 g/t Au, 18.8% Sb) from 412.0 m
SDDSC092	419.1	419.5	0.4	3.9	1.0	5.7	2.3	0.4 m @ 5.7 g/t AuEq (3.9 g/t Au, 1.0% Sb) from 419.1 m
SDDSC092	424.3	428.6	4.3	6.8	2.6	11.8	50.8	4.3 m @ 11.8 g/t AuEq (6.8 g/t Au, 2.6% Sb) from 424.3 m
SDDSC092	431.9	433.3	1.4	0.6	0.6	1.7	2.4	1.4 m @ 1.7 g/t AuEq (0.6 g/t Au, 0.6% Sb) from 431.9 m
SDDSC092	442.35	442.77	0.42	1.1	0.0	1.1	0.5	0.4 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 442.4 m
SDDSC092	460.5	461.7	1.2	2.3	0.2	2.7	3.2	1.2 m @ 2.7 g/t AuEq (2.3 g/t Au, 0.2% Sb) from 460.5 m
SDDSC092	463.3	464.5	1.2	1.9	0.5	2.8	3.4	1.2 m @ 2.8 g/t AuEq (1.9 g/t Au, 0.5% Sb) from 463.3 m
SDDSC092	466.8	469.9	3.1	4.8	0.3	5.4	16.8	3.1 m @ 5.4 g/t AuEq (4.8 g/t Au, 0.3% Sb) from 466.8 m
SDDSC092	472.66	473.41	0.75	0.4	0.3	1.0	0.8	0.8 m @ 1.0 g/t AuEq (0.4 g/t Au, 0.3% Sb) from 472.7 m
SDDSC092	477	481.21	4.21	2.8	0.1	3.1	13.0	4.2 m @ 3.1 g/t AuEq (2.8 g/t Au, 0.1% Sb) from 477.0 m
SDDSC092	484.31	485.4	1.09	0.7	1.3	3.1	3.4	1.1 m @ 3.1 g/t AuEq (0.7 g/t Au, 1.3% Sb) from 484.3 m
SDDSC092	488.66	489	0.34	1.1	0.1	1.3	0.5	0.3 m @ 1.3 g/t AuEq (1.1 g/t Au, 0.1% Sb) from 488.7 m
SDDSC092	493.82	494	0.18	1.0	1.0	2.8	0.5	0.2 m @ 2.8 g/t AuEq (1.0 g/t Au, 1.0% Sb) from 493.8 m
SDDSC092	545.21	545.95	0.74	0.2	0.4	1.0	0.8	0.7 m @ 1.0 g/t AuEq (0.2 g/t Au, 0.4% Sb) from 545.2 m
SDDSC092	547.81	550.18	2.37	0.6	1.3	3.1	7.4	2.4 m @ 3.1 g/t AuEq (0.6 g/t Au, 1.3% Sb) from 547.8 m
SDDSC092	569.2	570.4	1.2	5.2	0.6	6.3	7.6	1.2 m @ 6.3 g/t AuEq (5.2 g/t Au, 0.6% Sb) from 569.2 m
SDDSC092	574.18	576.28	2.1	7.2	1.6	10.3	21.6	2.1 m @ 10.3 g/t AuEq (7.2 g/t Au, 1.6% Sb) from 574.2 m
SDDSC092	583.95	584.15	0.2	1.5	4.3	9.6	1.9	0.2 m @ 9.6 g/t AuEq (1.5 g/t Au, 4.3% Sb) from 584.0 m
SDDSC092	588.86	589.67	0.81	1.0	0.0	1.0	0.8	0.8 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 588.9 m
SDDSC092	604.6	605	0.4	7.0	0.3	7.7	3.1	0.4 m @ 7.7 g/t AuEq (7.0 g/t Au, 0.3% Sb) from 604.6 m
SDDSC092	609	609.58	0.58	51.7	0.1	51.8	30.1	0.6 m @ 51.8 g/t AuEq (51.7 g/t Au, 0.1% Sb) from 609.0 m
SDDSC092	632	632.8	0.8	2.9	1.0	4.8	3.8	0.8 m @ 4.8 g/t AuEq (2.9 g/t Au, 1.0% Sb) from 632.0 m
SDDSC092	640.3	642.2	1.9	1.6	0.1	1.7	3.2	1.9 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.1% Sb) from 640.3 m
SDDSC092	646.7	646.9	0.2	2.4	2.4	6.9	1.4	0.2 m @ 6.9 g/t AuEq (2.4 g/t Au, 2.4% Sb) from 646.7 m
SDDSC092	649.8	650.5	0.7	5.0	3.2	11.1	7.8	0.7 m @ 11.1 g/t AuEq (5.0 g/t Au, 3.2% Sb) from 649.8 m
SDDSC092	655.1	655.3	0.2	160.0	8.7	176.4	35.3	0.2 m @ 176.4 g/t AuEq (160.0 g/t Au, 8.7% Sb) from 655.1 m
SDDSC092	657.7	663.2	5.5	1.8	0.7	3.2	17.4	5.5 m @ 3.2 g/t AuEq (1.8 g/t Au, 0.7% Sb) from 657.7 m
SDDSC092	664.66	671.5	6.84	5.5	0.2	5.9	40.1	6.8 m @ 5.9 g/t AuEq (5.5 g/t Au, 0.2% Sb) from 664.7 m
SDDSC092	678	679	1	1.4	0.0	1.5	1.5	1.0 m @ 1.5 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 678.0 m
SDDSC092	681.6	684.88	3.28	267.8	1.8	271.1	889.2	3.3 m @ 271.1 g/t AuEq (267.8 g/t Au, 1.8% Sb) from 681.6 m
SDDSC092	711.9	712.35	0.45	1.2	0.0	1.2	0.5	0.5 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 711.9 m
SDDSC092	717.9	718.8	0.9	1.5	0.0	1.5	1.3	0.9 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 717.9 m
SDDSC093	236.58	238.8	2.22	3.8	1.3	6.4	14.1	2.2 m @ 6.4 g/t AuEq (3.8 g/t Au, 1.3% Sb) from 236.6 m
SDDSC093	268.9	275.4	6.5	1.6	0.3	2.1	13.8	6.5 m @ 2.1 g/t AuEq (1.6 g/t Au, 0.3% Sb) from 268.9 m
SDDSC093	284.3	286.4	2.1	2.3	0.2	2.6	5.5	2.1 m @ 2.6 g/t AuEq (2.3 g/t Au, 0.2% Sb) from 284.3 m
SDDSC093	292.92	294.25	1.33	1.2	0.4	1.9	2.5	1.3 m @ 1.9 g/t AuEq (1.2 g/t Au, 0.4% Sb) from 292.9 m
SDDSC093	297.87	299.5	1.63	0.1	0.4	0.8	1.3	1.6 m @ 0.8 g/t AuEq (0.1 g/t Au, 0.4% Sb) from 297.9 m
SDDSC093	304.1	306.2	2.1	0.6	0.3	1.2	2.5	2.1 m @ 1.2 g/t AuEq (0.6 g/t Au, 0.3% Sb) from 304.1 m
SDDSC093	338	338.2	0.2	1.9	0.2	2.3	0.5	0.2 m @ 2.3 g/t AuEq (1.9 g/t Au, 0.2% Sb) from 338.0 m
SDDSC093	346.8	347.1	0.3	1.4	0.6	2.4	0.7	0.3 m @ 2.4 g/t AuEq (1.4 g/t Au, 0.6% Sb) from 346.8 m
SDDSC093	458	459	1	1.4	0.0	1.0	1.0	1.0 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 458.0 m
SDDSC093	498	500	2	1.0	0.0	1.1	2.2	2.0 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 498.0 m
SDDSC093	503	506.9	3.9	1.0	0.3	1.6	6.2	3.9 m @ 1.6 g/t AuEq (1.0 g/t Au, 0.3% Sb) from 503.0 m
SDDSC093	524.8	524.94	0.14	8.7	1.2	10.9	1.5	0.1 m @ 10.9 g/t AuEq (8.7 g/t Au, 1.2% Sb) from 524.8 m
SDDSC093	528.73	528.94	0.21	11.1	0.0	11.1	2.3	0.2 m @ 11.1 g/t AuEq (11.1 g/t Au, 0.0% Sb) from 528.7 m
	532	532.94	0.21	1.2	0.0	1.5	1.3	0.9 m @ 1.5 g/t AuEq (1.2 g/t Au, 0.2% Sb) from 532.0 m
2002003	540.19	543.64	3.45	0.4	0.2	1.5	3.9	3.4 m @ 1.1 g/t AuEq (0.4 g/t Au, 0.4% Sb) from 540.2 m
SDDSC093		5-5.04	5.45		1.0	2.5	0.6	0.2 m @ 2.5 g/t AuEq (0.6 g/t Au, 1.0% Sb) from 545.5 m
SDDSC093		545 68	0.23	0.6			. 0.0	
SDDSC093 SDDSC093	545.45	545.68 558	0.23	0.6				
SDDSC093 SDDSC093 SDDSC093	545.45 557	558	1	0.4	0.6	1.4	1.4	1.0 m @ 1.4 g/t AuEq (0.4 g/t Au, 0.6% Sb) from 557.0 m
SDDSC093 SDDSC093	545.45							

Hole-ID SDDSC094A	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
2223C034A	144	146	2	5.5	0.1	5.6	11.2	2.0 m @ 5.6 g/t AuEq (5.5 g/t Au, 0.1% Sb) from 144.0 m
SDDSC094A	154	157	3	2.1	0.5	3.0	9.1	3.0 m @ 3.0 g/t AuEq (2.1 g/t Au, 0.5% Sb) from 154.0 m
SDDSC094A	159.9	163	3.1	5.1	0.4	5.9	18.3	3.1 m @ 5.9 g/t AuEq (5.1 g/t Au, 0.4% Sb) from 159.9 m
SDDSC094A	167.9	170	2.1	19.6	0.5	20.6	43.2	2.1 m @ 20.6 g/t AuEq (19.6 g/t Au, 0.5% Sb) from 167.9 m
SDDSC094A	179	186.45	7.45	3.1	2.4	7.7	57.6	7.4 m @ 7.7 g/t AuEq (3.1 g/t Au, 2.4% Sb) from 179.0 m
SDDSC094A	188.59	188.89	0.3	1.1	0.4	1.9	0.6	0.3 m @ 1.9 g/t AuEq (1.1 g/t Au, 0.4% Sb) from 188.6 m
SDDSC094A	194.34	194.84	0.5	1.2	0.3	1.8	0.9	0.5 m @ 1.8 g/t AuEq (1.2 g/t Au, 0.3% Sb) from 194.3 m
SDDSC094A	201.33	201.6	0.27	0.7	0.3	1.3	0.4	0.3 m @ 1.3 g/t AuEq (0.7 g/t Au, 0.3% Sb) from 201.3 m
SDDSC094A	227.15	227.3	0.15	0.7	4.7	9.6	1.4	0.2 m @ 9.6 g/t AuEq (0.7 g/t Au, 4.7% Sb) from 227.2 m
SDDSC094A	242.48	244.1	1.62	1.9	0.0	2.0	3.2	1.6 m @ 2.0 g/t AuEq (1.9 g/t Au, 0.0% Sb) from 242.5 m
SDDSC094A	246.2	251.77	5.57	0.8	0.1	0.9	5.0	5.6 m @ 0.9 g/t AuEq (0.8 g/t Au, 0.1% Sb) from 246.2 m
SDDSC094A	277.3	278.56	1.26	13.0	5.8	23.9	30.1	1.3 m @ 23.9 g/t AuEq (13.0 g/t Au, 5.8% Sb) from 277.3 m
SDDSC094A	281.4	281.66	0.26	7.8	0.6	8.9	2.3	0.3 m @ 8.9 g/t AuEq (7.8 g/t Au, 0.6% Sb) from 281.4 m
SDDSC094A	338.16	340.77	2.61	9.3	0.5	10.2	26.7	2.6 m @ 10.2 g/t AuEq (9.3 g/t Au, 0.5% Sb) from 338.2 m
SDDSC095	213.42	213.76	0.34	1.5	0.0	1.5	0.5	0.3 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 213.4 m
SDDSC095	236	237	1	2.8	0.0	2.8	2.8	1.0 m @ 2.8 g/t AuEq (2.8 g/t Au, 0.0% Sb) from 236.0 m
SDDSC096	120.84	121.34	0.5	21.8	0.0	21.8	10.9	0.5 m @ 21.8 g/t AuEq (21.8 g/t Au, 0.0% Sb) from 120.8 m
SDDSC096	128.75	129	0.25	3.0	0.0	3.0	0.8	0.3 m @ 3.0 g/t AuEq (3.0 g/t Au, 0.0% Sb) from 128.8 m
SDDSC096	140.35	140.69	0.34	1.2	0.0	1.2	0.4	0.3 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 140.4 m
SDDSC096	143.95	144.64	0.69	1.8	0.0	1.8	1.2	0.7 m @ 1.8 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 144.0 m
SDDSC097A	202.8	207.15	4.35	1.6	0.5	2.5	10.8	4.3 m @ 2.5 g/t AuEq (1.6 g/t Au, 0.5% Sb) from 202.8 m
SDDSC097A	270.4	270.9	0.5	1.3	0.0	1.3	0.6	0.5 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 270.4 m
SDDSC097A	275.55	277.34	1.79	3.4	0.1	3.6	6.5	1.8 m @ 3.6 g/t AuEq (3.4 g/t Au, 0.1% Sb) from 275.6 m
SDDSC097A	288.95	290	1.05	2.1	0.0	2.1	2.2	1.1 m @ 2.1 g/t AuEq (2.1 g/t Au, 0.0% Sb) from 289.0 m
SDDSC097A	301.84	302.48	0.64	3.0	0.4	3.8	2.4	0.6 m @ 3.8 g/t AuEq (3.0 g/t Au, 0.4% Sb) from 301.8 m
SDDSC097A	305.29	306.72	1.43	4.6	0.1	4.8	6.9	1.4 m @ 4.8 g/t AuEq (4.6 g/t Au, 0.1% Sb) from 305.3 m
SDDSC097A	318.82	320.25	1.43	0.2	3.5	6.8	9.7	1.4 m @ 6.8 g/t AuEq (0.2 g/t Au, 3.5% Sb) from 318.8 m
SDDSC097A	327	327.59	0.59	1.0	11.2	22.1	13.0	0.6 m @ 22.1 g/t AuEq (1.0 g/t Au, 11.2% Sb) from 327.0 m
SDDSC097A	336.9	337.84	0.94	19.4	11.9	41.8	39.3	0.9 m @ 41.8 g/t AuEq (19.4 g/t Au, 11.9% Sb) from 336.9 m
SDDSC097A	342.5	342.98	0.48	0.9	0.3	1.6	0.8	0.5 m @ 1.6 g/t AuEq (0.9 g/t Au, 0.3% Sb) from 342.5 m
SDDSC097A	346.29	351.33	5.04	5.9	1.6	8.9	45.1	5.0 m @ 8.9 g/t AuEq (5.9 g/t Au, 1.6% Sb) from 346.3 m
SDDSC097A	354.83	358	3.17	4.0	4.1	11.6	36.9	3.2 m @ 11.6 g/t AuEq (4.0 g/t Au, 4.1% Sb) from 354.8 m
SDDSC097A	362.45	365.66	3.21	4.2	1.8	7.6	24.4	3.2 m @ 7.6 g/t AuEq (4.2 g/t Au, 1.8% Sb) from 362.5 m
SDDSC097A	368.19	375.15	6.96	3.1	0.8	4.5	31.2	7.0 m @ 4.5 g/t AuEq (3.1 g/t Au, 0.8% Sb) from 368.2 m
SDDSC097A	379	381.96	2.96	2.9	0.6	4.0	11.9	3.0 m @ 4.0 g/t AuEq (2.9 g/t Au, 0.6% Sb) from 379.0 m
SDDSC097A	397.41	398.96	1.55	1.9	0.0	2.0	3.1	1.5 m @ 2.0 g/t AuEq (1.9 g/t Au, 0.0% Sb) from 397.4 m
SDDSC097A	402.21	402.52	0.31	0.8	0.6	1.9	0.6	0.3 m @ 1.9 g/t AuEq (0.8 g/t Au, 0.6% Sb) from 402.2 m
SDDSC097A	406	407	1	2.9	0.0	2.9	2.9	1.0 m @ 2.9 g/t AuEq (2.9 g/t Au, 0.0% Sb) from 406.0 m
SDDSC097A	411.65	412.05	0.4	7.0	0.4	7.6	3.1	0.4 m @ 7.6 g/t AuEq (7.0 g/t Au, 0.4% Sb) from 411.7 m
SDDSC097A	414.63	415.5	0.87	2.0	0.0	2.1	1.8	0.9 m @ 2.1 g/t AuEq (2.0 g/t Au, 0.0% Sb) from 414.6 m
SDDSC097A	421.27	423.25	1.98	2.1	0.1	2.4	4.8	2.0 m @ 2.4 g/t AuEq (2.1 g/t Au, 0.1% Sb) from 421.3 m
SDDSC097A	425.5	433 441	7.5	3.9 3.1	0.9 0.6	5.5	41.6 14.3	7.5 m @ 5.5 g/t AuEq (3.9 g/t Au, 0.9% Sb) from 425.5 m
SDDSC097A SDDSC097A	437.6 446.85	449.15	3.4 2.3	0.7	0.8	4.2 1.0	2.2	3.4 m @ 4.2 g/t AuEq (3.1 g/t Au, 0.6% Sb) from 437.6 m
SDDSC097A SDDSC097A	440.85	454.89	3.39	6.2	2.0	9.8	33.3	2.3 m @ 1.0 g/t AuEq (0.7 g/t Au, 0.1% Sb) from 446.9 m 3.4 m @ 9.8 g/t AuEq (6.2 g/t Au, 2.0% Sb) from 451.5 m
SDDSC097A	470.7	471.2	0.5	6.4	0.5	7.4	3.7	0.5 m @ 7.4 g/t AuEq (6.4 g/t Au, 2.5% Sb) from 470.7 m
SDDSC097A	480.49	481.08	0.59	8.2	0.0	8.3	4.9	0.6 m @ 8.3 g/t AuEq (8.2 g/t Au, 0.0% Sb) from 480.5 m
SDDSC097A	489.4	496.83	7.43	8.5	0.4	9.2	68.1	7.4 m @ 9.2 g/t AuEq (8.5 g/t Au, 0.4% Sb) from 489.4 m
SDDSC097A	98.28	98.74	0.46	2.5	0.1	2.8	1.3	0.5 m @ 2.8 g/t AuEq (2.5 g/t Au, 0.1% Sb) from 98.3 m
SDDSC098	125.3	125.95	0.40	17.9	5.7	28.6	18.6	0.7 m @ 28.6 g/t AuEq (17.9 g/t Au, 5.7% Sb) from 125.3 m
SDDSC098	132.8	134.89	2.09	3.9	2.1	7.8	16.3	2.1 m @ 7.8 g/t AuEq (3.9 g/t Au, 2.1% Sb) from 132.8 m
SDDSC098	147.1	155.23	8.13	1.8	1.8	5.2	42.4	8.1 m @ 5.2 g/t AuEq (1.8 g/t Au, 1.8% Sb) from 147.1 m
SDDSC098	160.15	160.3	0.15	0.3	1.0	2.2	0.3	0.2 m @ 2.2 g/t AuEq (0.3 g/t Au, 1.0% Sb) from 160.2 m
SDDSC098	162.45	166.2	3.75	3.9	1.3	6.2	23.4	3.8 m @ 6.2 g/t AuEq (3.9 g/t Au, 1.3% Sb) from 162.5 m
SDDSC098	169.77	169.92	0.15	0.5	5.6	11.1	1.7	0.1 m @ 11.1 g/t AuEq (0.5 g/t Au, 5.6% Sb) from 169.8 m
SDDSC098	172.3	176	3.7	0.5	0.2	1.0	3.5	3.7 m @ 1.0 g/t AuEq (0.5 g/t Au, 0.2% Sb) from 172.3 m
SDDSC098	187.29	188	0.71	20.1	0.0	20.2	14.3	0.7 m @ 20.2 g/t AuEq (20.1 g/t Au, 0.0% Sb) from 187.3 m
SDDSC098	194.36	194.89	0.53	0.8	1.6	3.9	2.1	0.5 m @ 3.9 g/t AuEq (0.8 g/t Au, 1.6% Sb) from 194.4 m
SDDSC098	204.23	207.77	3.54	0.4	0.4	1.1	4.1	3.5 m @ 1.1 g/t AuEq (0.4 g/t Au, 0.4% Sb) from 204.2 m
SDDSC098	204.23	216.51	5.51	1.2	0.4	1.1	7.0	5.5 m @ 1.3 g/t AuEq (1.2 g/t Au, 0.4% Sb) from 204.2 m
SDDSC098	221.05	2210.51	0.66	2.1	0.0	2.2	1.5	0.7 m @ 2.2 g/t AuEq (2.1 g/t Au, 0.1% Sb) from 221.1 m
SDDSC098	241.06	242.55	1.49	1.1	0.0	1.1	1.7	1.5 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 241.1 m
JUU1098		242.55	1.49	1.5	0.0	1.5	2.6	1.7 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 245.9 m
	245 92		00	_ <u>_</u> .J	0.0	1.5	2.0	
SDDSC098	245.92 259.89				0.4	0.9	2.8	3.1 m @ 0.9 g/t AuEa (0.1 g/t Au. 0.4% Sb) from 259 9 m
	245.92 259.89 140.73	263 141.55	3.11 0.82	0.1 12.5	0.4	0.9 12.5	2.8 10.3	3.1 m @ 0.9 g/t AuEq (0.1 g/t Au, 0.4% Sb) from 259.9 m 0.8 m @ 12.5 g/t AuEq (12.5 g/t Au, 0.0% Sb) from 140.7 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC100	447	448	1	2.6	0.0	2.6	2.6	1.0 m @ 2.6 g/t AuEq (2.6 g/t Au, 0.0% Sb) from 447.0 m
SDDSC100	453	455	2	7.7	1.1	9.7	19.3	2.0 m @ 9.7 g/t AuEq (7.7 g/t Au, 1.1% Sb) from 453.0 m
SDDSC100	468.95	470.9	1.95	16.8	1.7	20.0	39.1	1.9 m @ 20.0 g/t AuEq (16.8 g/t Au, 1.7% Sb) from 469.0 m
SDDSC100	487.4	489.45	2.05	7.5	4.9	16.8	34.3	2.1 m @ 16.8 g/t AuEq (7.5 g/t Au, 4.9% Sb) from 487.4 m
SDDSC100	507.55	509	1.45	20.5	0.2	20.9	30.4	1.4 m @ 20.9 g/t AuEq (20.5 g/t Au, 0.2% Sb) from 507.6 m
SDDSC100	518	521	3	0.5	0.6	1.6	4.7	3.0 m @ 1.6 g/t AuEq (0.5 g/t Au, 0.6% Sb) from 518.0 m
SDDSC100	534	534.5	0.5	1.5	0.0	1.5	0.7	0.5 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 534.0 m
SDDSC100	593.21	594.9	1.69	0.5	0.6	1.5	2.6	1.7 m @ 1.5 g/t AuEq (0.5 g/t Au, 0.6% Sb) from 593.2 m
SDDSC100	626.8	627.1	0.3	5.2	0.5	6.1	1.8	0.3 m @ 6.1 g/t AuEq (5.2 g/t Au, 0.5% Sb) from 626.8 m
SDDSC100	634.45	634.9	0.45	1.0	0.1	1.1	0.5	0.4 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.1% Sb) from 634.5 m
SDDSC100	643.55	644.4	0.85	2.6	0.0	2.7	2.3	0.9 m @ 2.7 g/t AuEq (2.6 g/t Au, 0.0% Sb) from 643.6 m
SDDSC100	652.16	658.46	6.3	0.6	0.2	1.0	6.0	6.3 m @ 1.0 g/t AuEq (0.6 g/t Au, 0.2% Sb) from 652.2 m
SDDSC100	674.2	679.09	4.89	0.7	0.6	1.8	8.6	4.9 m @ 1.8 g/t AuEq (0.7 g/t Au, 0.6% Sb) from 674.2 m
SDDSC100	683.35	683.7	0.35	1.7	0.3	2.3	0.8	0.4 m @ 2.3 g/t AuEq (1.7 g/t Au, 0.3% Sb) from 683.4 m
SDDSC100 SDDSC100	723.55 730.06	724 732.22	0.45	7.5 0.1	0.1	7.7 0.7	3.5	0.5 m @ 7.7 g/t AuEq (7.5 g/t Au, 0.1% Sb) from 723.6 m
SDDSC100	730.06	732.22	4.38	4.9	0.3	5.4	23.8	2.2 m @ 0.7 g/t AuEq (0.1 g/t Au, 0.3% Sb) from 730.1 m 4.4 m @ 5.4 g/t AuEq (4.9 g/t Au, 0.3% Sb) from 737.3 m
SDDSC100	737.32	783		2.3	0.3	2.5	10.1	
		783	4	0.9	0.1		2.9	4.0 m @ 2.5 g/t AuEq (2.3 g/t Au, 0.1% Sb) from 779.0 m
SDDSC100 SDDSC100	788 819.1	819.4	0.3	1.6	0.0	1.0 1.6	0.5	3.0 m @ 1.0 g/t AuEq (0.9 g/t Au, 0.0% Sb) from 788.0 m 0.3 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 819.1 m
SDDSC100	819.1	819.4	0.3	3.0	0.0	3.0	1.7	
SDDSC100 SDDSC100	829.95 849.6	830.5	3.6	3.0 4.8	0.0	4.8	1.7	0.5 m @ 3.0 g/t AuEq (3.0 g/t Au, 0.0% Sb) from 830.0 m 3.6 m @ 4.8 g/t AuEq (4.8 g/t Au, 0.0% Sb) from 849.6 m
SDDSC100	859	859.3	0.3	1.1	0.0	1.1	0.3	0.3 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 859.0 m
SDDSC100	891.6	891.94	0.34	45.2	0.0	45.2	15.4	0.3 m @ 45.2 g/t AuEq (45.2 g/t Au, 0.0% Sb) from 891.6 m
SDDSC100	911	915	4	1.7	0.0	1.8	7.1	4.0 m @ 1.8 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 911.0 m
SDDSC100	364.48	366.05	1.57	0.4	0.2	0.8	1.2	1.6 m @ 0.8 g/t AuEq (0.4 g/t Au, 0.2% Sb) from 364.5 m
SDDSC102	373.43	373.66	0.23	1.0	0.5	2.0	0.5	0.2 m @ 2.0 g/t AuEq (1.0 g/t Au, 0.5% Sb) from 373.4 m
SDDSC102	378.63	378.86	0.23	0.6	0.5	1.6	0.4	0.2 m @ 1.6 g/t AuEq (0.6 g/t Au, 0.5% Sb) from 378.6 m
SDDSC102	387.3	387.49	0.19	0.6	1.9	4.1	0.8	0.2 m @ 4.1 g/t AuEq (0.6 g/t Au, 1.9% Sb) from 387.3 m
SDDSC102	390	393.26	3.26	0.3	0.8	1.9	6.2	3.3 m @ 1.9 g/t AuEq (0.3 g/t Au, 0.8% Sb) from 390.0 m
SDDSC102	419.25	424.89	5.64	2.0	0.1	2.1	11.9	5.6 m @ 2.1 g/t AuEq (2.0 g/t Au, 0.1% Sb) from 419.3 m
SDDSC102	457.75	458	0.25	1.6	0.0	1.6	0.4	0.3 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 457.8 m
SDDSC102	478.4	481	2.6	2.2	0.1	2.4	6.2	2.6 m @ 2.4 g/t AuEq (2.2 g/t Au, 0.1% Sb) from 478.4 m
SDDSC102	491.2	492.61	1.41	2.4	0.1	2.6	3.6	1.4 m @ 2.6 g/t AuEq (2.4 g/t Au, 0.1% Sb) from 491.2 m
SDDSC102	495.04	495.23	0.19	16.6	1.0	18.4	3.5	0.2 m @ 18.4 g/t AuEq (16.6 g/t Au, 1.0% Sb) from 495.0 m
SDDSC102	501	502.03	1.03	0.8	0.3	1.2	1.3	1.0 m @ 1.2 g/t AuEq (0.8 g/t Au, 0.3% Sb) from 501.0 m
SDDSC104	119.1	121.94	2.84	1.0	0.0	1.0	2.8	2.8 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 119.1 m
SDDSC104	127.6	127.75	0.15	0.7	2.3	5.0	0.7	0.2 m @ 5.0 g/t AuEq (0.7 g/t Au, 2.3% Sb) from 127.6 m
SDDSC104	133	134	1	1.0	0.0	1.0	1.0	1.0 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 133.0 m
SDDSC104	140	144.6	4.6	1.5	0.0	1.5	7.1	4.6 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 140.0 m
SDDSC104	431.69	435.12	3.43	1.0	0.7	2.3	8.0	3.4 m @ 2.3 g/t AuEq (1.0 g/t Au, 0.7% Sb) from 431.7 m
SDDSC104	438	445.26	7.26	2.7	1.8	6.2	44.8	7.3 m @ 6.2 g/t AuEq (2.7 g/t Au, 1.8% Sb) from 438.0 m
SDDSC104	447.58	455.66	8.08	2.5	0.4	3.2	25.6	8.1 m @ 3.2 g/t AuEq (2.5 g/t Au, 0.4% Sb) from 447.6 m
SDDSC104	461.98	466.91	4.93	1.9	0.2	2.3	11.3	4.9 m @ 2.3 g/t AuEq (1.9 g/t Au, 0.2% Sb) from 462.0 m
SDDSC104	471.32	471.62	0.3	12.3	0.0	12.3	3.7	0.3 m @ 12.3 g/t AuEq (12.3 g/t Au, 0.0% Sb) from 471.3 m
SDDSC104	472.79	473.03	0.24	1.8	0.6	3.0	0.7	0.2 m @ 3.0 g/t AuEq (1.8 g/t Au, 0.6% Sb) from 472.8 m
SDDSC104	486.07	486.44	0.37	13.8	0.2	14.2	5.2	0.4 m @ 14.2 g/t AuEq (13.8 g/t Au, 0.2% Sb) from 486.1 m
SDDSC104	490.67	494	3.33	0.6	0.4	1.5	4.8	3.3 m @ 1.5 g/t AuEq (0.6 g/t Au, 0.4% Sb) from 490.7 m
SDDSC104	495.85	496.55	0.7	1.2	0.2	1.6	1.1	0.7 m @ 1.6 g/t AuEq (1.2 g/t Au, 0.2% Sb) from 495.9 m
SDDSC104	501.84	502.56	0.72	1.4	0.6	2.5	1.8	0.7 m @ 2.5 g/t AuEq (1.4 g/t Au, 0.6% Sb) from 501.8 m
SDDSC104	525	526.35	1.35	1.7	0.0	1.8	2.4	1.4 m @ 1.8 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 525.0 m
SDDSC104	537.73	539.15	1.42	1.8	0.0	1.8	2.6	1.4 m @ 1.8 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 537.7 m
SDDSC104	526.65	530	3.35	0.5	0.0	0.5	1.7	3.4 m @ 0.5 g/t AuEq (0.5 g/t Au, 0.0% Sb) from 526.7 m
SDDSC105	221	222	1	1.7	0.0	1.7	1.7	1.0 m @ 1.7 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 221.0 m
SDDSC105	225	225.39	0.39	1.7	0.0	1.7	0.7	0.4 m @ 1.7 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 225.0 m
SDDSC106	205	207.68	2.68	0.7	0.0	0.7	1.9	2.7 m @ 0.7 g/t AuEq (0.7 g/t Au, 0.0% Sb) from 205.0 m
SDDSC106	291.2	291.55	0.35	1.0	0.0	1.0	0.4	0.4 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 291.2 m
SDDSC106	306.84	307.1	0.26	1.2	0.0	1.3	0.3	0.3 m @ 1.3 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 306.8 m
SDDSC106	327.95	329.15	1.2	1.4	0.0	1.4	1.7	1.2 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 328.0 m
SDDSC106	336.15	336.7	0.55	1.0	0.1	1.1	0.6	0.6 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.1% Sb) from 336.2 m
SDDSC106 SDDSC106	339	344.5 350.95	5.5	1.8 2.7	0.4 0.3	2.6 3.3	14.5	5.5 m @ 2.6 g/t AuEq (1.8 g/t Au, 0.4% Sb) from 339.0 m
20020100	346.45	350.95	4.5 39.9	3.6			14.7 229 5	4.5 m @ 3.3 g/t AuEq (2.7 g/t Au, 0.3% Sb) from 346.5 m
SDDSC10C		39X 9	39.9	3.0	1.1	5.8	229.5	39.9 m @ 5.8 g/t AuEq (3.6 g/t Au, 1.1% Sb) from 359.0 m
SDDSC106	359 403 6				0.0	1.0	0.2	0.2 m = 0.1 a/t AuEa/1.0 a/t Au = 0.00/ ch from 40.2 cm
SDDSC106 SDDSC106 SDDSC106	403.6 405.9	403.78	0.18	1.0 1.1	0.0	1.0 1.9	0.2	0.2 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 403.6 m 3.4 m @ 1.9 g/t AuEq (1.1 g/t Au, 0.4% Sb) from 405.9 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC106	419.96	421.01	1.05	1.1	0.1	1.2	1.3	1.1 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.1% Sb) from 420.0 m
SDDSC106	423.57	423.8	0.23	1.0	0.1	1.1	0.3	0.2 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.1% Sb) from 423.6 m
SDDSC106	433.16	434.09	0.93	8.6	0.6	9.7	9.0	0.9 m @ 9.7 g/t AuEq (8.6 g/t Au, 0.6% Sb) from 433.2 m
SDDSC106	436.57	439.33	2.76	3.3	0.9	5.1	14.0	2.8 m @ 5.1 g/t AuEq (3.3 g/t Au, 0.9% Sb) from 436.6 m
SDDSC106	454.35	454.65	0.3	1.3	0.1	1.4	0.4	0.3 m @ 1.4 g/t AuEq (1.3 g/t Au, 0.1% Sb) from 454.4 m
SDDSC106	457.02	460.15	3.13	0.6	0.5	1.7	5.2	3.1 m @ 1.7 g/t AuEq (0.6 g/t Au, 0.5% Sb) from 457.0 m
SDDSC106	468.78	474.37	5.59	1.6	0.3	2.3	12.7	5.6 m @ 2.3 g/t AuEq (1.6 g/t Au, 0.3% Sb) from 468.8 m
SDDSC106	480.65	486.97	6.32	1.2	0.3	1.8	11.4	6.3 m @ 1.8 g/t AuEq (1.2 g/t Au, 0.3% Sb) from 480.7 m
SDDSC106	495.66	496.71	1.05	5.1	0.5	5.9	6.2	1.0 m @ 5.9 g/t AuEq (5.1 g/t Au, 0.5% Sb) from 495.7 m
SDDSC106	506	507.39	1.39	0.5	1.4	3.1	4.3	1.4 m @ 3.1 g/t AuEq (0.5 g/t Au, 1.4% Sb) from 506.0 m
SDDSC106	525.15	529	3.85	1.0	0.0	1.1	4.2	3.9 m @ 1.1 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 525.2 m
SDDSC106	535	535.75	0.75	30.9	19.5	67.4	50.6	0.8 m @ 67.4 g/t AuEq (30.9 g/t Au, 19.5% Sb) from 535.0 m
SDDSC107	335.6	338.03	2.43	0.6	0.4	1.3	3.2	2.4 m @ 1.3 g/t AuEq (0.6 g/t Au, 0.4% Sb) from 335.6 m
SDDSC107	341.01	344.65	3.64	0.8	0.3	1.5	5.4	3.6 m @ 1.5 g/t AuEq (0.8 g/t Au, 0.3% Sb) from 341.0 m
SDDSC107	348.65	351.65	3	5.7	0.3	6.2	18.7	3.0 m @ 6.2 g/t AuEq (5.7 g/t Au, 0.3% Sb) from 348.7 m
SDDSC107	353.85	354.37	0.52	0.7	0.5	1.6	0.8	0.5 m @ 1.6 g/t AuEq (0.7 g/t Au, 0.5% Sb) from 353.9 m
SDDSC107	362	362.34	0.34	3.3	0.3	3.7	1.3	0.3 m @ 3.7 g/t AuEq (3.3 g/t Au, 0.3% Sb) from 362.0 m
SDDSC107	365.46	366.3	0.84	1.1	0.0	1.2	1.0	0.8 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 365.5 m
SDDSC107	373	377	4	0.7	0.0	0.7	2.8	4.0 m @ 0.7 g/t AuEq (0.7 g/t Au, 0.0% Sb) from 373.0 m
SDDSC107	380	381	1	6.6	0.0	6.6	6.6	1.0 m @ 6.6 g/t AuEq (6.6 g/t Au, 0.0% Sb) from 380.0 m
SDDSC107	395.26	396.16	0.9	2.3	0.2	2.6	2.4	0.9 m @ 2.6 g/t AuEq (2.3 g/t Au, 0.2% Sb) from 395.3 m
SDDSC107	398.57	399.95	1.38	0.9	0.2	1.2	1.7	1.4 m @ 1.2 g/t AuEq (0.9 g/t Au, 0.2% Sb) from 398.6 m
SDDSC107	405.47	409.55	4.08	0.4	0.2	0.8	3.2	4.1 m @ 0.8 g/t AuEq (0.4 g/t Au, 0.2% Sb) from 405.5 m
SDDSC107	413.88	414.18	0.3	2.0	0.0	2.1	0.6	0.3 m @ 2.1 g/t AuEq (2.0 g/t Au, 0.0% Sb) from 413.9 m
SDDSC107	416.9	417.11	0.21	0.8	6.4	12.9	2.7	0.2 m @ 12.9 g/t AuEq (0.8 g/t Au, 6.4% Sb) from 416.9 m
SDDSC107	424.97	425.93	0.96	14.7	10.5	34.5	33.1	1.0 m @ 34.5 g/t AuEq (14.7 g/t Au, 10.5% Sb) from 425.0 m
SDDSC107	433.82	434.27	0.45	1.3	0.0	1.3	0.6	0.4 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 433.8 m
SDDSC107	438.62	439.07	0.45	1.6	0.1	1.7	0.8	0.4 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.1% Sb) from 438.6 m
SDDSC107	444.89	447.45	2.56	1.6	0.1	1.7	4.4	2.6 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.1% Sb) from 444.9 m
SDDSC107	491.61	494.5	2.89	17.5	3.1	23.3	67.3	2.9 m @ 23.3 g/t AuEq (17.5 g/t Au, 3.1% Sb) from 491.6 m
SDDSC107 SDDSC107	496.95	500	3.05	19.7	1.2	22.0	67.0	3.1 m @ 22.0 g/t AuEq (19.7 g/t Au, 1.2% Sb) from 497.0 m
	526.17	526.68	0.51	4.5	1.5	7.4	3.8	0.5 m @ 7.4 g/t AuEq (4.5 g/t Au, 1.5% Sb) from 526.2 m
SDDSC107 SDDSC107	543.54 546.75	544 561.75	0.46	0.7 9.3	0.3 3.7	1.3 16.3	0.6	0.5 m @ 1.3 g/t AuEq (0.7 g/t Au, 0.3% Sb) from 543.5 m 15.0 m @ 16.3 g/t AuEq (9.3 g/t Au, 3.7% Sb) from 546.8 m
SDDSC107	566.85	576	9.15	39.1	0.6	40.2	367.9	9.1 m @ 40.2 g/t AuEq (39.1 g/t Au, 0.6% Sb) from 566.9 m
SDDSC107	580.48	583	2.52	1.0	0.0	1.4	3.5	2.5 m @ 1.4 g/t AuEq (1.0 g/t Au, 0.2% Sb) from 580.5 m
SDDSC107	585.1	585.35	0.25	31.5	0.6	32.6	8.2	0.3 m @ 32.6 g/t AuEq (31.5 g/t Au, 0.6% Sb) from 585.1 m
SDDSC107	588.28	590.09	1.81	16.4	1.9	20.0	36.3	1.8 m @ 20.0 g/t AuEq (16.4 g/t Au, 1.9% Sb) from 588.3 m
SDDSC107	684.32	685.35	1.03	2318.4	0.3	2318.9	2388.5	1.0 m @ 2,318.9 g/t AuEq (2,318.4 g/t Au, 0.3% Sb) from 684.3 m
SDDSC107	695	695.52	0.52	5.6	0.9	7.3	3.8	0.5 m @ 7.3 g/t AuEq (5.6 g/t Au, 0.9% Sb) from 695.0 m
SDDSC107	700.4	703.7	3.3	2.0	0.4	2.7	8.9	3.3 m @ 2.7 g/t AuEq (2.0 g/t Au, 0.4% Sb) from 700.4 m
SDDSC107	708.4	708.7	0.3	2.3	0.0	2.4	0.7	0.3 m @ 2.4 g/t AuEq (2.3 g/t Au, 0.0% Sb) from 708.4 m
SDDSC107	723.03	725.75	2.72	10.9	2.4	15.4	41.8	2.7 m @ 15.4 g/t AuEq (10.9 g/t Au, 2.4% Sb) from 723.0 m
SDDSC107	728.78	731.55	2.77	1.6	0.2	1.9	5.4	2.8 m @ 1.9 g/t AuEq (1.6 g/t Au, 0.2% Sb) from 728.8 m
SDDSC107	746.07	747.02	0.95	2.8	0.0	2.8	2.7	0.9 m @ 2.8 g/t AuEq (2.8 g/t Au, 0.0% Sb) from 746.1 m
SDDSC107	752.81	753.12	0.31	0.3	0.5	1.2	0.4	0.3 m @ 1.2 g/t AuEq (0.3 g/t Au, 0.5% Sb) from 752.8 m
SDDSC107	756	757.92	1.92	1.4	0.0	1.4	2.7	1.9 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 756.0 m
SDDSC107	769.92	772.2	2.28	2.4	0.1	2.7	6.1	2.3 m @ 2.7 g/t AuEq (2.4 g/t Au, 0.1% Sb) from 769.9 m
SDDSC107	775.54	776.35	0.81	0.7	0.4	1.5	1.2	0.8 m @ 1.5 g/t AuEq (0.7 g/t Au, 0.4% Sb) from 775.5 m
SDDSC107	782.7	790.3	7.6	13.3	0.2	13.6	103.3	7.6 m @ 13.6 g/t AuEq (13.3 g/t Au, 0.2% Sb) from 782.7 m
SDDSC107	809	811.63	2.63	1.2	0.0	1.2	3.1	2.6 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 809.0 m
SDDSC108A	354.05	365	10.95	1.9	2.0	5.6	61.5	11.0 m @ 5.6 g/t AuEq (1.9 g/t Au, 2.0% Sb) from 354.1 m
SDDSC108A	382.8	385.25	2.45	5.6	0.3	6.2	15.2	2.4 m @ 6.2 g/t AuEq (5.6 g/t Au, 0.3% Sb) from 382.8 m
SDDSC108A	419	419.3	0.3	19.6	2.6	24.5	7.4	0.3 m @ 24.5 g/t AuEq (19.6 g/t Au, 2.6% Sb) from 419.0 m
SDDSC108A	438.4	438.65	0.25	48.8	0.0	48.8	12.2	0.3 m @ 48.8 g/t AuEq (48.8 g/t Au, 0.0% Sb) from 438.4 m
SDDSC108A	440.7	450.5	9.8	1.6	0.1	1.8	17.5	9.8 m @ 1.8 g/t AuEq (1.6 g/t Au, 0.1% Sb) from 440.7 m
SDDSC108A	636.18	643.97	7.79	1.0	1.0	2.9	22.4	7.8 m @ 2.9 g/t AuEq (1.0 g/t Au, 1.0% Sb) from 636.2 m
SDDSC108A	655.58	665.35	9.77	1.8	1.3	4.3	41.7	9.8 m @ 4.3 g/t AuEq (1.8 g/t Au, 1.3% Sb) from 655.6 m
SDDSC108A	674.1	674.4	0.3	1.0	1.1	3.2	0.9	0.3 m @ 3.2 g/t AuEq (1.0 g/t Au, 1.1% Sb) from 674.1 m
SDDSC108A	680.35	680.59	0.24	0.5	1.3	2.9	0.7	0.2 m @ 2.9 g/t AuEq (0.5 g/t Au, 1.3% Sb) from 680.4 m
SDDSC108A	694.88	700.35	5.47	0.7	0.3	1.3	7.1	5.5 m @ 1.3 g/t AuEq (0.7 g/t Au, 0.3% Sb) from 694.9 m
SDDSC108A	707.56	712.78	5.22	2.3	0.6	3.4	17.8	5.2 m @ 3.4 g/t AuEq (2.3 g/t Au, 0.6% Sb) from 707.6 m
SDDSC108A	762.91	763.15	0.24	576.0	0.1	576.1	138.3	0.2 m @ 576.1 g/t AuEq (576.0 g/t Au, 0.1% Sb) from 762.9 m
SDDSC108A	787.92	789.15	1.23	0.9	0.1	1.1	1.4	1.2 m @ 1.1 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 787.9 m
SDDSC108A	797.9	798.98	1.08	16.9	0.1	17.1	18.5	1.1 m @ 17.1 g/t AuEq (16.9 g/t Au, 0.1% Sb) from 797.9 m
	801.82	803.7	1.88	0.8	0.2	1.3	2.4	1.9 m @ 1.3 g/t AuEq (0.8 g/t Au, 0.2% Sb) from 801.8 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC108A	821.2	822.39	1.19	0.9	0.5	1.8	2.2	1.2 m @ 1.8 g/t AuEq (0.9 g/t Au, 0.5% Sb) from 821.2 m
SDDSC108A	832.94	833.32	0.38	3.2	0.0	3.2	1.2	0.4 m @ 3.2 g/t AuEq (3.2 g/t Au, 0.0% Sb) from 832.9 m
SDDSC109	196.85	198.52	1.67	4.5	1.2	6.8	11.4	1.7 m @ 6.8 g/t AuEq (4.5 g/t Au, 1.2% Sb) from 196.9 m
SDDSC109	283	287	4	0.7	0.1	0.9	3.5	4.0 m @ 0.9 g/t AuEq (0.7 g/t Au, 0.1% Sb) from 283.0 m
SDDSC109	289.7	290.1	0.4	1.1	0.0	1.1	0.4	0.4 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 289.7 m
SDDSC109	293.65	294.8	1.15	1.3	0.2	1.7	2.0	1.2 m @ 1.7 g/t AuEq (1.3 g/t Au, 0.2% Sb) from 293.7 m
SDDSC109	345.22	351.98	6.76	4.4	0.7	5.7	38.6	6.8 m @ 5.7 g/t AuEq (4.4 g/t Au, 0.7% Sb) from 345.2 m
SDDSC109	354.71	356.9	2.19	0.5	0.5	1.4	3.1	2.2 m @ 1.4 g/t AuEq (0.5 g/t Au, 0.5% Sb) from 354.7 m
SDDSC109	359.07	359.28	0.21	2.3	0.0	2.3	0.5	0.2 m @ 2.3 g/t AuEq (2.3 g/t Au, 0.0% Sb) from 359.1 m
SDDSC109	362	365.85	3.85	3.8	0.4	4.5	17.3	3.9 m @ 4.5 g/t AuEq (3.8 g/t Au, 0.4% Sb) from 362.0 m
SDDSC109	368	371.67	3.67	0.9	0.0	0.9	3.3	3.7 m @ 0.9 g/t AuEq (0.9 g/t Au, 0.0% Sb) from 368.0 m
SDDSC109	374.6	375.51	0.91	12.0	2.7	17.0	15.5	0.9 m @ 17.0 g/t AuEq (12.0 g/t Au, 2.7% Sb) from 374.6 m
SDDSC109	378.4	379.29	0.89	1.3	1.0	3.1	2.8	0.9 m @ 3.1 g/t AuEq (1.3 g/t Au, 1.0% Sb) from 378.4 m
SDDSC109	386.38	387.9	1.52	6.0	0.9	7.8	11.8	1.5 m @ 7.8 g/t AuEq (6.0 g/t Au, 0.9% Sb) from 386.4 m
SDDSC109	407.67	408.2	0.53	1.1	0.2	1.4	0.8	0.5 m @ 1.4 g/t AuEq (1.1 g/t Au, 0.2% Sb) from 407.7 m
SDDSC109	423.05	424	0.95	1.8	0.0	1.9	1.8	0.9 m @ 1.9 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 423.1 m
SDDSC109	456.76	466	9.24	7.0	2.1	11.0	101.2	9.2 m @ 11.0 g/t AuEq (7.0 g/t Au, 2.1% Sb) from 456.8 m
SDDSC109	503.6	503.93	0.33	0.6	3.5	7.3	2.4	0.3 m @ 7.3 g/t AuEq (0.6 g/t Au, 3.5% Sb) from 503.6 m
SDDSC110	401.2	401.9	0.7	9.4	1.0	11.2	7.9	0.7 m @ 11.2 g/t AuEq (9.4 g/t Au, 1.0% Sb) from 401.2 m
SDDSC110	534.91	536.21	1.3	0.8	0.5	1.8	2.3	1.3 m @ 1.8 g/t AuEq (0.8 g/t Au, 0.5% Sb) from 534.9 m
SDDSC110	556.2	557.3	1.1	1.8	0.6	2.8	3.1	1.1 m @ 2.8 g/t AuEq (1.8 g/t Au, 0.6% Sb) from 556.2 m
SDDSC110	694.85	695.26	0.41	0.4	0.6	1.5	0.6	0.4 m @ 1.5 g/t AuEq (0.4 g/t Au, 0.6% Sb) from 694.9 m
SDDSC110	731.3	731.75	0.45	0.6	0.8	2.0	0.9	0.5 m @ 2.0 g/t AuEq (0.6 g/t Au, 0.8% Sb) from 731.3 m
SDDSC110	759.68	762.75	3.07	0.6	0.1	0.8	2.4	3.1 m @ 0.8 g/t AuEq (0.6 g/t Au, 0.1% Sb) from 759.7 m
SDDSC110	789	790	1	1.6	0.0	1.6	1.6	1.0 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 789.0 m
SDDSC110	822	823	1	1.1	0.0	1.1	1.1	1.0 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 822.0 m
SDDSC110	825.45	826.28	0.83	1.7	0.0	1.8	1.5	0.8 m @ 1.8 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 825.5 m
SDDSC110	829.91	830.6	0.69	1.1	0.0	1.1	0.8	0.7 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 829.9 m
SDDSC111	123.5	123.68	0.18	0.1	0.6	1.2	0.2	0.2 m @ 1.2 g/t AuEq (0.1 g/t Au, 0.6% Sb) from 123.5 m
SDDSC111	138.75	139.2	0.45	0.1	1.8	3.5	1.6	0.4 m @ 3.5 g/t AuEq (0.1 g/t Au, 1.8% Sb) from 138.8 m
SDDSC111	187.1	189.2	2.1	3.4	1.2	5.7	12.0	2.1 m @ 5.7 g/t AuEq (3.4 g/t Au, 1.2% Sb) from 187.1 m
SDDSC111	229.77	230.77	1	1.4	0.9	3.2	3.2	1.0 m @ 3.2 g/t AuEq (1.4 g/t Au, 0.9% Sb) from 229.8 m
SDDSC111	262.95	263.85	0.9	1.0	1.0	2.9	2.6	0.9 m @ 2.9 g/t AuEq (1.0 g/t Au, 1.0% Sb) from 263.0 m
SDDSC111	297.7	298.32	0.62	1.5	0.0	1.5	0.9	0.6 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 297.7 m
SDDSC111	302.55	302.83	0.28	1.2	0.3	1.7	0.5	0.3 m @ 1.7 g/t AuEq (1.2 g/t Au, 0.3% Sb) from 302.6 m
SDDSC111	309.9	310.9	1	4.1	0.0	4.1	4.1	1.0 m @ 4.1 g/t AuEq (4.1 g/t Au, 0.0% Sb) from 309.9 m
SDDSC111	315.9	316.1	0.2	6.9	0.5	7.8	1.6	0.2 m @ 7.8 g/t AuEq (6.9 g/t Au, 0.5% Sb) from 315.9 m
SDDSC111	322	330	8	2.7	0.4	3.5	27.9	8.0 m @ 3.5 g/t AuEq (2.7 g/t Au, 0.4% Sb) from 322.0 m
SDDSC111	341.8	343.3	1.5	0.8	0.4	1.5	2.3	1.5 m @ 1.5 g/t AuEq (0.8 g/t Au, 0.4% Sb) from 341.8 m
SDDSC111	350.88	351.45	0.57	2.6	0.5	3.4	2.0	0.6 m @ 3.4 g/t AuEq (2.6 g/t Au, 0.5% Sb) from 350.9 m
SDDSC111	355.5	357.6	2.1	0.2	0.5	1.1	2.4	2.1 m @ 1.1 g/t AuEq (0.2 g/t Au, 0.5% Sb) from 355.5 m
SDDSC111	377.95	380.05	2.1	0.3	0.6	1.4	3.0	2.1 m @ 1.4 g/t AuEq (0.3 g/t Au, 0.6% Sb) from 378.0 m
SDDSC111	393.85	400.67	6.82	3.6	0.4	4.3	29.5	6.8 m @ 4.3 g/t AuEq (3.6 g/t Au, 0.4% Sb) from 393.9 m
SDDSC111	453.9	455.13	1.23	3.5	0.0	3.6	4.4	1.2 m @ 3.6 g/t AuEq (3.5 g/t Au, 0.0% Sb) from 453.9 m
SDDSC112	273.23	274.1	0.87	16.7	10.9	37.3	32.4	0.9 m @ 37.3 g/t AuEq (16.7 g/t Au, 10.9% Sb) from 273.2 m
SDDSC112	307.87	308.05	0.18	1.6	0.0	1.6	0.3	0.2 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 307.9 m
SDDSC112	335.85	336.7	0.85	9.2	2.4	13.7	11.7	0.8 m @ 13.7 g/t AuEq (9.2 g/t Au, 2.4% Sb) from 335.9 m
SDDSC112	353.15	354.7	1.55	2.0	0.5	2.9	4.5	1.6 m @ 2.9 g/t AuEq (2.0 g/t Au, 0.5% Sb) from 353.2 m
SDDSC112 SDDSC112W1	368 275.67	369.39 277.5	1.39 1.83	0.0 2.5	4.1 0.2	7.8 2.8	10.8 5.2	1.4 m @ 7.8 g/t AuEq (0.0 g/t Au, 4.1% Sb) from 368.0 m 1.8 m @ 2.8 g/t AuEq (2.5 g/t Au, 0.2% Sb) from 275.7 m
SDDSC112W1 SDDSC112W1	313.2 343.81	313.87 344.76	0.67	1.0 3.3	0.0 0.0	1.0 3.3	0.7	0.7 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 313.2 m
		391.86		3.0		5.4	3.3	0.9 m @ 3.3 g/t AuEq (3.3 g/t Au, 0.0% Sb) from 343.8 m
SDDSC112W1	391.25		0.61		1.3			0.6 m @ 5.4 g/t AuEq (3.0 g/t Au, 1.3% Sb) from 391.3 m
SDDSC112W1 SDDSC112W1	394 399.15	396.95 400.65	2.95 1.5	0.8 18.1	0.1 1.6	0.9 21.1	2.6 31.7	2.9 m @ 0.9 g/t AuEq (0.8 g/t Au, 0.1% Sb) from 394.0 m 1.5 m @ 21.1 g/t AuEq (18.1 g/t Au, 1.6% Sb) from 399.2 m
SDDSC112W1 SDDSC112W1	543.5	543.7	0.2	18.1	5.6	12.4	2.5	0.2 m @ 12.4 g/t AuEq (1.9 g/t Au, 5.6% Sb) from 543.5 m
SDDSC112W1 SDDSC112W1	564.31	564.52	0.2	1.9	0.2	12.4	0.3	0.2 m @ 1.5 g/t AuEq (1.2 g/t Au, 5.6% Sb) from 564.3 m
SDDSC112W1 SDDSC112W1	606.94	608.85	1.91	2.1	0.2	3.2	6.2	1.9 m @ 3.2 g/t AuEq (2.1 g/t Au, 0.6% Sb) from 606.9 m
SDDSC112W1 SDDSC112W1	623.25	627.25	4	1.9	0.8	2.2	8.7	4.0 m @ 2.2 g/t AuEq (1.9 g/t Au, 0.2% Sb) from 623.3 m
SDDSC112W1 SDDSC112W1	623.25	635.25	5.64	0.7	0.2	1.1	6.0	4.0 m @ 2.2 g/t AuEq (1.9 g/t Au, 0.2% Sb) from 623.3 m 5.6 m @ 1.1 g/t AuEq (0.7 g/t Au, 0.2% Sb) from 629.6 m
SDDSC112W1 SDDSC112W1	637.65	638.8	1.15	4.7	0.2	6.3	7.3	1.1 m @ 6.3 g/t AuEq (4.7 g/t Au, 0.2% Sb) from 629.6 m
		641.39	0.34	2.2	0.9	2.3	0.8	0.3 m @ 2.3 g/t AuEq (2.2 g/t Au, 0.1% Sb) from 637.7 m
		041.39	0.54	۷.۷	0.1			
SDDSC112W1	641.05	647.00	2.45	0.0	27	100	30.0	2 1 m @ 1E 0 a/t AuEa /0.0 a/t Au 2 20/ Ch) from CAE 2 m
SDDSC112W1 SDDSC112W1	645.21	647.66 653.74	2.45	9.8	3.2	15.8	38.8	2.4 m @ 15.8 g/t AuEq (9.8 g/t Au, 3.2% Sb) from 645.2 m
SDDSC112W1		647.66 653.74 670.25	2.45 0.68 0.35	9.8 0.9 13.9	3.2 0.1 15.6	15.8 1.0 43.2	0.7 15.1	2.4 m @ 15.8 g/t AuEq (9.8 g/t Au, 3.2% Sb) from 645.2 m 0.7 m @ 1.0 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 653.1 m 0.4 m @ 43.2 g/t AuEq (13.9 g/t Au, 15.6% Sb) from 669.9 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC112W1	694.6	697.7	3.1	0.8	0.4	1.6	4.8	3.1 m @ 1.6 g/t AuEq (0.8 g/t Au, 0.4% Sb) from 694.6 m
SDDSC112W1	700.45	704.1	3.65	1.1	0.2	1.5	5.4	3.6 m @ 1.5 g/t AuEq (1.1 g/t Au, 0.2% Sb) from 700.5 m
SDDSC112W1	707.6	708.3	0.7	1.5	0.2	2.0	1.4	0.7 m @ 2.0 g/t AuEq (1.5 g/t Au, 0.2% Sb) from 707.6 m
SDDSC113	322.63	322.78	0.15	0.5	0.4	1.3	0.2	0.1 m @ 1.3 g/t AuEq (0.5 g/t Au, 0.4% Sb) from 322.6 m
SDDSC113	337	339	2	3.1	0.4	3.8	7.5	2.0 m @ 3.8 g/t AuEq (3.1 g/t Au, 0.4% Sb) from 337.0 m
SDDSC113 SDDSC113	345.37 358.06	345.68 361.05	0.31	4.2 0.7	0.7 0.2	5.6 1.1	1.7 3.2	0.3 m @ 5.6 g/t AuEq (4.2 g/t Au, 0.7% Sb) from 345.4 m 3.0 m @ 1.1 g/t AuEq (0.7 g/t Au, 0.2% Sb) from 358.1 m
SDDSC113	406.3	412.2	5.9	2.3	0.2	3.7	21.6	5.9 m @ 3.7 g/t AuEq (2.3 g/t Au, 0.7% Sb) from 406.3 m
SDDSC113	419	422	3	0.6	0.1	0.7	2.2	3.0 m @ 0.7 g/t AuEq (0.6 g/t Au, 0.1% Sb) from 419.0 m
SDDSC113	425	425.52	0.52	2.0	0.5	2.9	1.5	0.5 m @ 2.9 g/t AuEq (2.0 g/t Au, 0.5% Sb) from 425.0 m
SDDSC113	431.65	431.88	0.23	1.3	0.1	1.4	0.3	0.2 m @ 1.4 g/t AuEq (1.3 g/t Au, 0.1% Sb) from 431.7 m
SDDSC113	458.29	458.8	0.51	1.5	0.6	2.5	1.3	0.5 m @ 2.5 g/t AuEq (1.5 g/t Au, 0.6% Sb) from 458.3 m
SDDSC113	461.12	461.54	0.42	4.3	0.0	4.4	1.8	0.4 m @ 4.4 g/t AuEq (4.3 g/t Au, 0.0% Sb) from 461.1 m
SDDSC113	464.67	465.72	1.05	2.1	0.6	3.3	3.4	1.1 m @ 3.3 g/t AuEq (2.1 g/t Au, 0.6% Sb) from 464.7 m
SDDSC113	468.1	468.98	0.88	156.0	0.4	156.8	138.0	0.9 m @ 156.8 g/t AuEq (156.0 g/t Au, 0.4% Sb) from 468.1 m
SDDSC113	477	477.38	0.38	1.8	0.0	1.8	0.7	0.4 m @ 1.8 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 477.0 m
SDDSC113 SDDSC113	482 493.86	482.24 494.38	0.24	1.9 1.3	0.0	1.9 1.3	0.5	0.2 m @ 1.9 g/t AuEq (1.9 g/t Au, 0.0% Sb) from 482.0 m
SDDSC113	493.86 518.51	518.9	0.32	14.8	0.0	16.3	6.4	0.5 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 493.9 m 0.4 m @ 16.3 g/t AuEq (14.8 g/t Au, 0.8% Sb) from 518.5 m
SDDSC113	522.73	522.98	0.39	6.1	0.8	6.3	1.6	0.3 m @ 6.3 g/t AuEq (6.1 g/t Au, 0.1% Sb) from 522.7 m
SDDSC113	536.75	543	6.25	1.4	0.3	2.0	12.3	6.3 m @ 2.0 g/t AuEq (1.4 g/t Au, 0.3% Sb) from 536.8 m
SDDSC113	545.36	547.08	1.72	1.2	0.0	1.2	2.1	1.7 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 545.4 m
SDDSC113	552	555	3	1.5	0.4	2.3	6.9	3.0 m @ 2.3 g/t AuEq (1.5 g/t Au, 0.4% Sb) from 552.0 m
SDDSC113	558	573.5	15.5	3.4	0.9	5.0	77.5	15.5 m @ 5.0 g/t AuEq (3.4 g/t Au, 0.9% Sb) from 558.0 m
SDDSC113	575.55	580.87	5.32	10.5	1.7	13.7	73.0	5.3 m @ 13.7 g/t AuEq (10.5 g/t Au, 1.7% Sb) from 575.6 m
SDDSC113	590.8	591	0.2	0.7	0.3	1.2	0.2	0.2 m @ 1.2 g/t AuEq (0.7 g/t Au, 0.3% Sb) from 590.8 m
SDDSC113	595	595.68	0.68	0.6	0.4	1.4	0.9	0.7 m @ 1.4 g/t AuEq (0.6 g/t Au, 0.4% Sb) from 595.0 m
SDDSC113 SDDSC113	624.77	625.1 644.48	0.33	1.7 0.7	0.0 0.2	1.7 1.1	0.6	0.3 m @ 1.7 g/t AuEq (1.7 g/t Au, 0.0% Sb) from 624.8 m
SDDSC113 SDDSC113	644.36 702.4	703.25	0.12	327.7	2.8	332.9	283.0	0.1 m @ 1.1 g/t AuEq (0.7 g/t Au, 0.2% Sb) from 644.4 m 0.9 m @ 332.9 g/t AuEq (327.7 g/t Au, 2.8% Sb) from 702.4 m
SDDSC113	717.6	717.85	0.25	1.0	0.2	1.5	0.4	0.3 m @ 1.5 g/t AuEq (1.0 g/t Au, 0.2% Sb) from 717.6 m
SDDSC113	721.4	723.55	2.15	1.0	0.2	1.4	3.0	2.1 m @ 1.4 g/t AuEq (1.0 g/t Au, 0.2% Sb) from 721.4 m
SDDSC113	730.3	731.23	0.93	9.7	0.4	10.4	9.7	0.9 m @ 10.4 g/t AuEq (9.7 g/t Au, 0.4% Sb) from 730.3 m
SDDSC113	736	737.2	1.2	16.9	0.3	17.4	20.9	1.2 m @ 17.4 g/t AuEq (16.9 g/t Au, 0.3% Sb) from 736.0 m
SDDSC113	750.96	755.1	4.14	22.6	0.4	23.4	97.0	4.1 m @ 23.4 g/t AuEq (22.6 g/t Au, 0.4% Sb) from 751.0 m
SDDSC113	770	771	1	1.6	0.1	1.7	1.7	1.0 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.1% Sb) from 770.0 m
SDDSC113	788.66	788.87	0.21	6.7	0.0	6.7	1.4	0.2 m @ 6.7 g/t AuEq (6.7 g/t Au, 0.0% Sb) from 788.7 m
SDDSC113	791.41	791.68	0.27	10.9	0.0	10.9	2.9	0.3 m @ 10.9 g/t AuEq (10.9 g/t Au, 0.0% Sb) from 791.4 m
SDDSC113 SDDSC113	796.1 807.74	796.6 809.11	0.5	1.2 3.6	0.0	1.2 3.6	0.6	0.5 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 796.1 m 1.4 m @ 3.6 g/t AuEq (3.6 g/t Au, 0.0% Sb) from 807.7 m
SDDSC113 SDDSC113	816.59	819.43	2.84	0.9	0.0	0.9	2.5	2.8 m @ 0.9 g/t AuEq (0.9 g/t Au, 0.0% Sb) from 816.6 m
SDDSC113	485.12	485.97	0.85	1.2	0.8	2.7	2.3	0.9 m @ 2.7 g/t AuEq (1.2 g/t Au, 0.8% Sb) from 485.1 m
SDDSC114	510.52	512.55	2.03	2.1	0.3	2.6	5.2	2.0 m @ 2.6 g/t AuEq (2.1 g/t Au, 0.3% Sb) from 510.5 m
SDDSC114	520.59	521	0.41	1.3	0.0	1.3	0.5	0.4 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 520.6 m
SDDSC114	526.05	526.34	0.29	2.8	0.3	3.4	1.0	0.3 m @ 3.4 g/t AuEq (2.8 g/t Au, 0.3% Sb) from 526.1 m
SDDSC114	564.58	564.74	0.16	2.1	4.5	10.5	1.7	0.2 m @ 10.5 g/t AuEq (2.1 g/t Au, 4.5% Sb) from 564.6 m
SDDSC114	628.5	631.2	2.7	14.5	1.9	18.1	48.8	2.7 m @ 18.1 g/t AuEq (14.5 g/t Au, 1.9% Sb) from 628.5 m
SDDSC114	724.45	724.78	0.33	6.6	0.3	7.2	2.4	0.3 m @ 7.2 g/t AuEq (6.6 g/t Au, 0.3% Sb) from 724.5 m
SDDSC114	766.45	769.12	2.67	19.2	0.3	19.7	52.7	2.7 m @ 19.7 g/t AuEq (19.2 g/t Au, 0.3% Sb) from 766.5 m
SDDSC114 SDDSC114	776.2 787.39	776.6 788.11	0.4	3.6 1.2	0.0	3.6 1.2	1.5 0.9	0.4 m @ 3.6 g/t AuEq (3.6 g/t Au, 0.0% Sb) from 776.2 m 0.7 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 787.4 m
SDDSC114 SDDSC114	794.53	795.02	0.72	1.2	0.0	1.2	0.9	0.5 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 794.5 m
SDDSC114 SDDSC114	813.54	813.98	0.49	2.2	0.0	2.2	1.0	0.4 m @ 2.2 g/t AuEq (2.2 g/t Au, 0.0% Sb) from 813.5 m
SDDSC114	825.35	825.58	0.23	69.9	0.0	69.9	16.1	0.2 m @ 69.9 g/t AuEq (69.9 g/t Au, 0.0% Sb) from 825.4 m
SDDSC114	844.71	845.33	0.62	10.5	0.0	10.5	6.5	0.6 m @ 10.5 g/t AuEq (10.5 g/t Au, 0.0% Sb) from 844.7 m
SDDSC115A	452.86	453.06	0.2	0.2	1.1	2.2	0.4	0.2 m @ 2.2 g/t AuEq (0.2 g/t Au, 1.1% Sb) from 452.9 m
SDDSC115A	455.33	456.07	0.74	3.7	0.4	4.4	3.3	0.7 m @ 4.4 g/t AuEq (3.7 g/t Au, 0.4% Sb) from 455.3 m
SDDSC115A	491.09	491.6	0.51	0.7	0.3	1.2	0.6	0.5 m @ 1.2 g/t AuEq (0.7 g/t Au, 0.3% Sb) from 491.1 m
SDDSC115A	500.4	500.8	0.4	1.1	0.0	1.1	0.4	0.4 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 500.4 m
SDDSC115A	512.43	517.9	5.47	0.8	0.5	1.7	9.1	5.5 m @ 1.7 g/t AuEq (0.8 g/t Au, 0.5% Sb) from 512.4 m
SDDSC115A	528.9	529.47	0.57	0.5	0.3	1.1	0.7	0.6 m @ 1.1 g/t AuEq (0.5 g/t Au, 0.3% Sb) from 528.9 m
SDDSC115A	532.62	534.17	1.55	10.6	1.0	12.4	19.3	1.5 m @ 12.4 g/t AuEq (10.6 g/t Au, 1.0% Sb) from 532.6 m
SDDSC115A SDDSC115A	550.08 552.49	550.43 552.61	0.35	1.2 1.1	0.5 1.6	2.2 4.0	0.8	0.3 m @ 2.2 g/t AuEq (1.2 g/t Au, 0.5% Sb) from 550.1 m 0.1 m @ 4.0 g/t AuEq (1.1 g/t Au, 1.6% Sb) from 552.5 m
PERSETTRA	552.49					6.4	21.0	
SDDSC115A	563.63	566.89	3.26	2.6	2.0	h.4	Z1.0	3.3 m @ 6.4 g/t AuEq (2.6 g/t Au, 2.0% Sb) from 563.6 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC115A	580	590.4	10.4	1.2	1.0	3.0	30.8	10.4 m @ 3.0 g/t AuEq (1.2 g/t Au, 1.0% Sb) from 580.0 m
SDDSC115A	593	596	3	0.7	0.3	1.4	4.1	3.0 m @ 1.4 g/t AuEq (0.7 g/t Au, 0.3% Sb) from 593.0 m
SDDSC115A	619.26	619.37	0.11	1.4	0.6	2.4	0.3	0.1 m @ 2.4 g/t AuEq (1.4 g/t Au, 0.6% Sb) from 619.3 m
SDDSC115A	643.43	644.7	1.27	84.9	2.8	90.2	114.6	1.3 m @ 90.2 g/t AuEq (84.9 g/t Au, 2.8% Sb) from 643.4 m
SDDSC115A	646.28	646.61	0.33	109.0	3.8	116.1	38.3	0.3 m @ 116.1 g/t AuEq (109.0 g/t Au, 3.8% Sb) from 646.3 m
SDDSC115A	707.69	708.03	0.34	86.4	0.4	87.2	29.6	0.3 m @ 87.2 g/t AuEq (86.4 g/t Au, 0.4% Sb) from 707.7 m
SDDSC115A	719.5	719.65	0.15	87.1	4.3	95.3	14.3	0.1 m @ 95.3 g/t AuEq (87.1 g/t Au, 4.3% Sb) from 719.5 m
SDDSC115A	729.45	729.8	0.35	2.0	0.0	2.1	0.7	0.3 m @ 2.1 g/t AuEq (2.0 g/t Au, 0.0% Sb) from 729.5 m
SDDSC115A	742.35	742.85	0.5	1.1	0.1	1.2	0.6	0.5 m @ 1.2 g/t AuEq (1.1 g/t Au, 0.1% Sb) from 742.4 m
SDDSC115A SDDSC115A	745.95	749.35	3.4	2.7 3.1	0.1	2.8 3.1	9.7 3.1	3.4 m @ 2.8 g/t AuEq (2.7 g/t Au, 0.1% Sb) from 746.0 m
SDDSC115A SDDSC115A	753.45 768.9	754.45 769.77	0.87	1.2	0.0	1.2	1.0	1.0 m @ 3.1 g/t AuEq (3.1 g/t Au, 0.0% Sb) from 753.5 m 0.9 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 768.9 m
SDDSC115A SDDSC115A	785.6	786.23	0.63	1.2	0.0	1.2	0.9	0.6 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 785.6 m
SDDSC115A	791.45	794.1	2.65	1.6	0.0	1.6	4.2	2.6 m @ 1.6 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 791.5 m
SDDSC115A	846.88	847.57	0.69	1.3	0.0	1.3	0.9	0.7 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 846.9 m
SDDSC115A	853.92	854.39	0.47	1.6	0.0	1.7	0.8	0.5 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 853.9 m
SDDSC115A	865.55	865.87	0.32	1.0	0.0	1.0	0.3	0.3 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 865.6 m
SDDSC115A	869.18	869.51	0.33	2.2	0.0	2.2	0.7	0.3 m @ 2.2 g/t AuEq (2.2 g/t Au, 0.0% Sb) from 869.2 m
SDDSC115A	874.33	878.09	3.76	3.2	0.5	4.0	15.1	3.8 m @ 4.0 g/t AuEq (3.2 g/t Au, 0.5% Sb) from 874.3 m
SDDSC115A	881.6	882.81	1.21	0.9	0.1	1.0	1.2	1.2 m @ 1.0 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 881.6 m
SDDSC115A	885.44	885.68	0.24	3.6	0.2	3.9	0.9	0.2 m @ 3.9 g/t AuEq (3.6 g/t Au, 0.2% Sb) from 885.4 m
SDDSC116	406.81	407.24	0.43	1.3	0.0	1.3	0.6	0.4 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 406.8 m
SDDSC116	413.7	413.88	0.18	1.9	0.0	1.9	0.3	0.2 m @ 1.9 g/t AuEq (1.9 g/t Au, 0.0% Sb) from 413.7 m
SDDSC116	462.22	462.78	0.56	3.2	1.4	5.9	3.3	0.6 m @ 5.9 g/t AuEq (3.2 g/t Au, 1.4% Sb) from 462.2 m
SDDSC116	467.9	468.07	0.17	3.3	0.2	3.6	0.6	0.2 m @ 3.6 g/t AuEq (3.3 g/t Au, 0.2% Sb) from 467.9 m
SDDSC116	473.24	475.52	2.28	5.8	0.4	6.5	14.8	2.3 m @ 6.5 g/t AuEq (5.8 g/t Au, 0.4% Sb) from 473.2 m
SDDSC116	480.8	482.09	1.29	6.0	0.0	6.1	7.8	1.3 m @ 6.1 g/t AuEq (6.0 g/t Au, 0.0% Sb) from 480.8 m
SDDSC116	486.34	490.92	4.58	2.6	0.8	4.0	18.4	4.6 m @ 4.0 g/t AuEq (2.6 g/t Au, 0.8% Sb) from 486.3 m
SDDSC116	494.61	497.96 501.28	3.35 0.18	0.2	0.3 0.0	0.8	2.7 0.4	3.3 m @ 0.8 g/t AuEq (0.2 g/t Au, 0.3% Sb) from 494.6 m 0.2 m @ 2.4 g/t AuEq (2.4 g/t Au, 0.0% Sb) from 501.1 m
SDDSC116 SDDSC116	501.1 511.24	526.26	15.02	2.4 8.8	0.5	2.4 9.8	147.1	15.0 m @ 9.8 g/t AuEq (8.8 g/t Au, 0.5% Sb) from 511.2 m
SDDSC116	529.45	530.2	0.75	3.6	4.8	12.5	9.4	0.8 m @ 12.5 g/t AuEq (3.6 g/t Au, 4.8% Sb) from 529.5 m
SDDSC116	554	559	5	0.9	0.4	1.7	8.4	5.0 m @ 1.7 g/t AuEq (0.9 g/t Au, 0.4% Sb) from 554.0 m
SDDSC116	564	565	1	5.6	0.1	5.7	5.7	1.0 m @ 5.7 g/t AuEq (5.6 g/t Au, 0.1% Sb) from 564.0 m
SDDSC116	593.56	594.28	0.72	1.3	0.2	1.8	1.3	0.7 m @ 1.8 g/t AuEq (1.3 g/t Au, 0.2% Sb) from 593.6 m
SDDSC116	608.92	609.56	0.64	1.4	0.0	1.4	0.9	0.6 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 608.9 m
SDDSC116	615.27	618.7	3.43	1.2	0.7	2.5	8.7	3.4 m @ 2.5 g/t AuEq (1.2 g/t Au, 0.7% Sb) from 615.3 m
SDDSC117	313.74	313.96	0.22	1.4	0.0	1.4	0.3	0.2 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 313.7 m
SDDSC117	362	362.88	0.88	1.8	0.0	1.8	1.6	0.9 m @ 1.8 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 362.0 m
SDDSC117	381.2	383.41	2.21	0.4	0.0	0.4	0.9	2.2 m @ 0.4 g/t AuEq (0.4 g/t Au, 0.0% Sb) from 381.2 m
SDDSC117	511.1	511.48	0.38	0.9	0.3	1.5	0.6	0.4 m @ 1.5 g/t AuEq (0.9 g/t Au, 0.3% Sb) from 511.1 m
SDDSC117	542.08	542.53	0.45	1.3	0.0	1.3	0.6	0.4 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 542.1 m
SDDSC117	557.7	558.29	0.59	0.9	1.5	3.7	2.2	0.6 m @ 3.7 g/t AuEq (0.9 g/t Au, 1.5% Sb) from 557.7 m
SDDSC117	592.18	592.6	0.42	0.6	0.3	1.1	0.4	0.4 m @ 1.1 g/t AuEq (0.6 g/t Au, 0.3% Sb) from 592.2 m
SDDSC117 SDDSC117	606.6 636	619.85 636.4	13.25 0.4	0.6 0.6	0.3 0.7	1.2 2.0	16.5 0.8	13.3 m @ 1.2 g/t AuEq (0.6 g/t Au, 0.3% Sb) from 606.6 m 0.4 m @ 2.0 g/t AuEq (0.6 g/t Au, 0.7% Sb) from 636.0 m
SDDSC117 SDDSC117	637.6	638.1	0.4	0.5	0.7	1.1	0.8	0.5 m @ 1.1 g/t AuEq (0.5 g/t Au, 0.3% Sb) from 637.6 m
SDDSC117 SDDSC117	644.43	647.9	3.47	0.6	0.4	1.1	5.0	3.5 m @ 1.4 g/t AuEq (0.6 g/t Au, 0.4% Sb) from 644.4 m
SDDSC117 SDDSC117	652.05	655.67	3.62	0.8	0.3	1.3	4.7	3.6 m @ 1.3 g/t AuEq (0.8 g/t Au, 0.3% Sb) from 652.1 m
SDDSC117	658.09	658.2	0.11	3.5	0.0	3.6	0.4	0.1 m @ 3.6 g/t AuEq (3.5 g/t Au, 0.0% Sb) from 658.1 m
SDDSC117	684.32	688.3	3.98	0.4	0.3	1.0	4.1	4.0 m @ 1.0 g/t AuEq (0.4 g/t Au, 0.3% Sb) from 684.3 m
SDDSC117	707.52	708.85	1.33	0.3	0.5	1.4	1.8	1.3 m @ 1.4 g/t AuEq (0.3 g/t Au, 0.5% Sb) from 707.5 m
SDDSC117	715.37	717.36	1.99	5.6	0.0	5.6	11.2	2.0 m @ 5.6 g/t AuEq (5.6 g/t Au, 0.0% Sb) from 715.4 m
SDDSC117	721.45	722.8	1.35	0.2	0.4	1.1	1.5	1.3 m @ 1.1 g/t AuEq (0.2 g/t Au, 0.4% Sb) from 721.5 m
SDDSC117	739.14	739.47	0.33	0.9	0.6	2.0	0.7	0.3 m @ 2.0 g/t AuEq (0.9 g/t Au, 0.6% Sb) from 739.1 m
SDDSC117	741.88	750.54	8.66	3.5	0.3	4.1	35.5	8.7 m @ 4.1 g/t AuEq (3.5 g/t Au, 0.3% Sb) from 741.9 m
SDDSC117	752.76	753.8	1.04	1.4	0.3	2.0	2.1	1.0 m @ 2.0 g/t AuEq (1.4 g/t Au, 0.3% Sb) from 752.8 m
SDDSC117	759.74	760.36	0.62	1.0	0.0	1.0	0.6	0.6 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 759.7 m
SDDSC117	769.45	769.65	0.2	0.6	0.2	1.0	0.2	0.2 m @ 1.0 g/t AuEq (0.6 g/t Au, 0.2% Sb) from 769.5 m
SDDSC117	789.88	793	3.12	0.5	0.5	1.4	4.3	3.1 m @ 1.4 g/t AuEq (0.5 g/t Au, 0.5% Sb) from 789.9 m
SDDSC117	813.61	813.77	0.16	1.5	0.0	1.5	0.2	0.2 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 813.6 m
SDDSC117	845	849.8	4.8	0.7	0.0	0.7	3.3	4.8 m @ 0.7 g/t AuEq (0.7 g/t Au, 0.0% Sb) from 845.0 m
SDDSC117	853.47	853.68	0.21	0.8	0.5	1.8	0.4	0.2 m @ 1.8 g/t AuEq (0.8 g/t Au, 0.5% Sb) from 853.5 m
SDDSC117	856.14	860.07	3.93	0.7	0.1	0.8	3.3	3.9 m @ 0.8 g/t AuEq (0.7 g/t Au, 0.1% Sb) from 856.1 m
SDDSC117 SDDSC117	873.64	874.37	0.73	1.2	0.0	1.2	0.9	0.7 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 873.6 m
	888.28	888.83	0.55	3.1	0.0	3.1	1.7	0.6 m @ 3.1 g/t AuEq (3.1 g/t Au, 0.0% Sb) from 888.3 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC117	913.55	914.08	0.53	473.0	0.0	473.1	250.7	0.5 m @ 473.1 g/t AuEq (473.0 g/t Au, 0.0% Sb) from 913.6 m
SDDSC117	934.72	937.25	2.53	2.4	0.0	2.4	6.0	2.5 m @ 2.4 g/t AuEq (2.4 g/t Au, 0.0% Sb) from 934.7 m
SDDSC117	950.41	950.55	0.14	1.4	0.0	1.4	0.2	0.1 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 950.4 m
SDDSC117	966.62	967.49	0.87	2.4	0.0	2.4	2.1	0.9 m @ 2.4 g/t AuEq (2.4 g/t Au, 0.0% Sb) from 966.6 m
SDDSC117	1000.5	1000.94	0.44	1.4	0.0	1.4	0.6	0.4 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 1,000.5 m
SDDSC117	1008	1008.44	0.44	2.0	0.0	2.0	0.9	0.4 m @ 2.0 g/t AuEq (2.0 g/t Au, 0.0% Sb) from 1,008.0 m
SDDSC118	452.45	455.51	3.06	38.2	0.9	39.9	122.1	3.1 m @ 39.9 g/t AuEq (38.2 g/t Au, 0.9% Sb) from 452.5 m
SDDSC118	459.26	459.54	0.28	12.0	0.3	12.6	3.5	0.3 m @ 12.6 g/t AuEq (12.0 g/t Au, 0.3% Sb) from 459.3 m
SDDSC118	463.58	464.12	0.54	1.4	0.6	2.5	1.3	0.5 m @ 2.5 g/t AuEq (1.4 g/t Au, 0.6% Sb) from 463.6 m
SDDSC118	475.38	475.75	0.37	70.3	0.5	71.2	26.3	0.4 m @ 71.2 g/t AuEq (70.3 g/t Au, 0.5% Sb) from 475.4 m
SDDSC118	487.63	488.32	0.69	2.6	0.2	3.0	2.1	0.7 m @ 3.0 g/t AuEq (2.6 g/t Au, 0.2% Sb) from 487.6 m
SDDSC118	502.06	504.25	2.19	3.0	0.1	3.1	6.8	2.2 m @ 3.1 g/t AuEq (3.0 g/t Au, 0.1% Sb) from 502.1 m
SDDSC118	511.61	512.63	1.02	1.8	0.0	1.8	1.9	1.0 m @ 1.8 g/t AuEq (1.8 g/t Au, 0.0% Sb) from 511.6 m
SDDSC118	540.42	540.77	0.35	44.8	0.8	46.3	16.2	0.4 m @ 46.3 g/t AuEq (44.8 g/t Au, 0.8% Sb) from 540.4 m
SDDSC118	555.65	556.38	0.73	604.0	0.0	604.0	440.9	0.7 m @ 604.0 g/t AuEq (604.0 g/t Au, 0.0% Sb) from 555.7 m
SDDSC118	568.57	568.7	0.13	12.2	0.0	12.2	1.6	0.1 m @ 12.2 g/t AuEq (12.2 g/t Au, 0.0% Sb) from 568.6 m
SDDSC118	575.68	576.92	1.24	1.0	0.7	2.3	2.9	1.2 m @ 2.3 g/t AuEq (1.0 g/t Au, 0.7% Sb) from 575.7 m
SDDSC118	582	584.1	2.1	0.4	0.1	0.6	1.2	2.1 m @ 0.6 g/t AuEq (0.4 g/t Au, 0.1% Sb) from 582.0 m
SDDSC118	586.1	586.24	0.14	0.5	0.5	1.5	0.2	0.1 m @ 1.5 g/t AuEq (0.5 g/t Au, 0.5% Sb) from 586.1 m
SDDSC118	590.15	590.6	0.45	1.0	0.0	1.0	0.5	0.5 m @ 1.0 g/t AuEq (1.0 g/t Au, 0.0% Sb) from 590.2 m
SDDSC118	614.13	614.63	0.5	0.6	0.7	1.9	1.0	0.5 m @ 1.9 g/t AuEq (1.6 g/t Au, 0.7% Sb) from 614.1 m
SDDSC118	616.8	617.56	0.76	1.0	0.7	1.9	1.3	0.8 m @ 1.8 g/t AuEq (0.8 g/t Au, 0.4% Sb) from 616.8 m
SDDSC118	620.4	625.13	4.73	3.5	0.4	4.6	21.6	4.7 m @ 4.6 g/t AuEq (3.5 g/t Au, 0.6% Sb) from 620.4 m
SDDSC118	627.19	627.33	0.14	193.0	0.0	193.2	27.0	0.1 m @ 193.2 g/t AuEq (193.0 g/t Au, 0.1% Sb) from 627.2 m
SDDSC118	632.7		0.14	195.0	0.1	193.2	5.0	
SDDSC118	654.23	633.13 658	3.77	2.7	0.4	3.0	11.3	0.4 m @ 11.7 g/t AuEq (11.0 g/t Au, 0.4% Sb) from 632.7 m
								3.8 m @ 3.0 g/t AuEq (2.7 g/t Au, 0.2% Sb) from 654.2 m
SDDSC118	662.35	666.26	3.91	1.6	0.2	2.0	7.8	3.9 m @ 2.0 g/t AuEq (1.6 g/t Au, 0.2% Sb) from 662.4 m
SDDSC118	670.68	672	1.32	2.3	0.4	3.1	4.1	1.3 m @ 3.1 g/t AuEq (2.3 g/t Au, 0.4% Sb) from 670.7 m
SDDSC118	675.09	676.39	1.3	42.5	0.4	43.3	56.3	1.3 m @ 43.3 g/t AuEq (42.5 g/t Au, 0.4% Sb) from 675.1 m
SDDSC118	695.9	696.33	0.43	1.3	0.0	1.4	0.6	0.4 m @ 1.4 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 695.9 m
SDDSC118	711.56	711.91	0.35	10.0	0.0	10.0	3.5	0.4 m @ 10.0 g/t AuEq (10.0 g/t Au, 0.0% Sb) from 711.6 m
SDDSC118	737.44	737.77	0.33	0.4	0.4	1.2	0.4	0.3 m @ 1.2 g/t AuEq (0.4 g/t Au, 0.4% Sb) from 737.4 m
SDDSC118	758.04	758.82	0.78	0.2	0.6	1.3	1.0	0.8 m @ 1.3 g/t AuEq (0.2 g/t Au, 0.6% Sb) from 758.0 m
SDDSC118	763.21	763.55	0.34	1.1	0.3	1.7	0.6	0.3 m @ 1.7 g/t AuEq (1.1 g/t Au, 0.3% Sb) from 763.2 m
SDDSC118	765.39	765.74	0.35	0.2	0.9	1.9	0.7	0.4 m @ 1.9 g/t AuEq (0.2 g/t Au, 0.9% Sb) from 765.4 m
SDDSC118	793.72	794.08	0.36	0.1	0.6	1.3	0.5	0.4 m @ 1.3 g/t AuEq (0.1 g/t Au, 0.6% Sb) from 793.7 m
SDDSC118	815.48	817.09	1.61	1.5	0.0	1.5	2.5	1.6 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 815.5 m
SDDSC118	835.1	835.57	0.47	2.6	0.0	2.6	1.2	0.5 m @ 2.6 g/t AuEq (2.6 g/t Au, 0.0% Sb) from 835.1 m
SDDSC118	842.76	842.93	0.17	1.9	0.0	1.9	0.3	0.2 m @ 1.9 g/t AuEq (1.9 g/t Au, 0.0% Sb) from 842.8 m
SDDSC118	847.6	847.72	0.12	0.9	0.0	1.0	0.1	0.1 m @ 1.0 g/t AuEq (0.9 g/t Au, 0.0% Sb) from 847.6 m
SDDSC118	970.62	973.17	2.55	2.9	0.0	3.0	7.6	2.5 m @ 3.0 g/t AuEq (2.9 g/t Au, 0.0% Sb) from 970.6 m
SDDSC118	975.8	976.5	0.7	1.2	0.0	1.2	0.9	0.7 m @ 1.2 g/t AuEq (1.2 g/t Au, 0.0% Sb) from 975.8 m
SDDSC118	979.2	982.43	3.23	0.6	0.1	0.7	2.3	3.2 m @ 0.7 g/t AuEq (0.6 g/t Au, 0.1% Sb) from 979.2 m
SDDSC118	1120.4	1124	3.6	124.8	0.0	124.8	449.3	3.6 m @ 124.8 g/t AuEq (124.8 g/t Au, 0.0% Sb) from 1,120.4 m
SDDSC118	1180.78	1180.97	0.19	36.0	0.0	36.0	6.8	0.2 m @ 36.0 g/t AuEq (36.0 g/t Au, 0.0% Sb) from 1,180.8 m
SDDSC118	1207.74	1208	0.26	1.5	0.0	1.5	0.4	0.3 m @ 1.5 g/t AuEq (1.5 g/t Au, 0.0% Sb) from 1,207.7 m
SDDSC118	1210.24	1210.93	0.69	1.4	0.0	1.4	1.0	0.7 m @ 1.4 g/t AuEq (1.4 g/t Au, 0.0% Sb) from 1,210.2 m
SDDSC119	394.45	394.61	0.16	0.4	2.6	5.3	0.8	0.2 m @ 5.3 g/t AuEq (0.4 g/t Au, 2.6% Sb) from 394.5 m
SDDSC119	416.84	421.02	4.18	2.9	0.3	3.6	14.9	4.2 m @ 3.6 g/t AuEq (2.9 g/t Au, 0.3% Sb) from 416.8 m
SDDSC119	423.4	427	3.6	1.1	0.8	2.6	9.4	3.6 m @ 2.6 g/t AuEq (1.1 g/t Au, 0.8% Sb) from 423.4 m
SDDSC119	430.5	431.38	0.88	3.0	0.8	4.4	3.9	0.9 m @ 4.4 g/t AuEq (3.0 g/t Au, 0.8% Sb) from 430.5 m
SDDSC119	440	441.4	1.4	8.9	5.9	20.0	28.1	1.4 m @ 20.0 g/t AuEq (8.9 g/t Au, 5.9% Sb) from 440.0 m
SDDSC119	447.54	450	2.46	2.0	0.1	2.3	5.7	2.5 m @ 2.3 g/t AuEq (2.0 g/t Au, 0.1% Sb) from 447.5 m
SDDSC119	539.4	539.6	0.2	1.4	9.0	18.3	3.7	0.2 m @ 18.3 g/t AuEq (1.4 g/t Au, 9.0% Sb) from 539.4 m
SDDSC119	568.5	569.1	0.6	0.1	0.9	1.8	1.1	0.6 m @ 1.8 g/t AuEq (0.1 g/t Au, 0.9% Sb) from 568.5 m
SDDSC119	590.8	593.55	2.75	1.2	0.5	2.2	6.0	2.8 m @ 2.2 g/t AuEq (1.2 g/t Au, 0.5% Sb) from 590.8 m
SDDSC119	474	474.57	0.57	1.3	0.0	1.3	0.7	0.6 m @ 1.3 g/t AuEq (1.3 g/t Au, 0.0% Sb) from 474.0 m
SDDSC119	571.2	582.7	11.5	3.7	1.2	6.0	69.2	11.5 m @ 6.0 g/t AuEq (3.7 g/t Au, 1.2% Sb) from 571.2 m
SDDSC119	607	617.8	10.8	1.2	0.3	1.7	18.8	10.8 m @ 1.7 g/t AuEq (1.2 g/t Au, 0.3% Sb) from 607.0 m
SDDSC119	620.1	625.7	5.6	2.7	0.9	4.3	24.2	5.6 m @ 4.3 g/t AuEq (2.7 g/t Au, 0.5% Sb) from 620.1 m
SDDSC119 SDDSC119	642.72	644.35	1.63	1.1	0.9	1.4	24.2	1.6 m @ 1.4 g/t AuEq (1.1 g/t Au, 0.1% Sb) from 642.7 m
SDDSC119 SDDSC119	646.27	647.85	1.58	6.3	0.1	6.6	10.4	1.6 m @ 6.6 g/t AuEq (6.3 g/t Au, 0.1% Sb) from 646.3 m
SDDSC119 SDDSC119								
	650.04	653.55	3.51	0.7	0.4 0.2	1.5 18.0	5.3 10.4	3.5 m @ 1.5 g/t AuEq (0.7 g/t Au, 0.4% Sb) from 650.0 m
	65740	6577				1×11		=
SDDSC119 SDDSC119 SDDSC119	657.12 663.4	657.7 670.54	0.58 7.14	17.6 1.4	0.2	2.3	16.1	0.6 m @ 18.0 g/t AuEq (17.6 g/t Au, 0.2% Sb) from 657.1 m 7.1 m @ 2.3 g/t AuEq (1.4 g/t Au, 0.4% Sb) from 663.4 m

Hole-ID	From (m)	To (m)	Length (m)	Au g/t	Sb%	AuEq g/t	AuEq gram metres	Text
SDDSC119	675.67	683.67	8	0.6	0.2	1.0	7.7	8.0 m @ 1.0 g/t AuEq (0.6 g/t Au, 0.2% Sb) from 675.7 m
SDDSC119	691	692.11	1.11	2.2	0.6	3.4	3.7	1.1 m @ 3.4 g/t AuEq (2.2 g/t Au, 0.6% Sb) from 691.0 m
SDDSC119	700.05	702	1.95	2.3	0.1	2.4	4.8	2.0 m @ 2.4 g/t AuEq (2.3 g/t Au, 0.1% Sb) from 700.1 m
SDDSC119	704.1	704.29	0.19	4.8	0.9	6.6	1.2	0.2 m @ 6.6 g/t AuEq (4.8 g/t Au, 0.9% Sb) from 704.1 m
SDDSC119	706.9	707.32	0.42	10.1	0.4	10.9	4.6	0.4 m @ 10.9 g/t AuEq (10.1 g/t Au, 0.4% Sb) from 706.9 m
SDDSC119	710.35	710.88	0.53	2.9	0.4	3.6	1.9	0.5 m @ 3.6 g/t AuEq (2.9 g/t Au, 0.4% Sb) from 710.4 m
SDDSC119	713.31	713.65	0.34	0.7	0.6	1.9	0.7	0.3 m @ 1.9 g/t AuEq (0.7 g/t Au, 0.6% Sb) from 713.3 m
SDDSC119	715.1	715.4	0.3	0.6	0.3	1.2	0.4	0.3 m @ 1.2 g/t AuEq (0.6 g/t Au, 0.3% Sb) from 715.1 m
SDDSC119	731.85	732.15	0.3	0.5	0.7	1.7	0.5	0.3 m @ 1.7 g/t AuEq (0.5 g/t Au, 0.7% Sb) from 731.9 m
SDDSC119	734.32	736.28	1.96	0.8	0.3	1.4	2.7	2.0 m @ 1.4 g/t AuEq (0.8 g/t Au, 0.3% Sb) from 734.3 m
SDDSC119	741.1	743.5	2.4	1.4	0.4	2.1	5.0	2.4 m @ 2.1 g/t AuEq (1.4 g/t Au, 0.4% Sb) from 741.1 m
SDDSC119	846.2	846.75	0.55	1.2	0.9	2.8	1.5	0.5 m @ 2.8 g/t AuEq (1.2 g/t Au, 0.9% Sb) from 846.2 m
SDDSC119W1	610.5	611	0.5	1.1	2.3	5.4	2.7	0.5 m @ 5.4 g/t AuEq (1.1 g/t Au, 2.3% Sb) from 610.5 m
SDDSC119W1	610.5	617.1	6.6	0.8	0.3	1.3	8.9	6.6 m @ 1.3 g/t AuEq (0.8 g/t Au, 0.3% Sb) from 610.5 m
SDDSC119W1	619.85	625.4	5.55	3.6	0.8	5.1	28.2	5.5 m @ 5.1 g/t AuEq (3.6 g/t Au, 0.8% Sb) from 619.9 m
SDDSC119W1	631.9	632.3	0.4	1.1	0.5	2.1	0.8	0.4 m @ 2.1 g/t AuEq (1.1 g/t Au, 0.5% Sb) from 631.9 m
SDDSC119W1	641.1	641.5	0.4	0.7	0.5	1.6	0.6	0.4 m @ 1.6 g/t AuEq (0.7 g/t Au, 0.5% Sb) from 641.1 m
SDDSC119W1	563.65	563.82	0.17	0.6	0.7	1.9	0.3	0.2 m @ 1.9 g/t AuEq (0.6 g/t Au, 0.7% Sb) from 563.7 m
SDDSC120	571.62	571.76	0.17	1.6	2.0	5.3	0.3	
SDDSC120	594.68	597.98	3.3	1.3	0.3	1.9	6.2	0.1 m @ 5.3 g/t AuEq (1.6 g/t Au, 2.0% Sb) from 571.6 m 3.3 m @ 1.9 g/t AuEq (1.3 g/t Au, 0.3% Sb) from 594.7 m
SDDSC120	600.35	603.06	2.71	4.5	0.3	6.1	16.5	
								2.7 m @ 6.1 g/t AuEq (4.5 g/t Au, 0.8% Sb) from 600.4 m
SDDSC120	621.25	621.9	0.65	2.0	1.3	4.5	2.9	0.6 m @ 4.5 g/t AuEq (2.0 g/t Au, 1.3% Sb) from 621.3 m
SDDSC120	625.3	627.95	2.65	0.5	0.1	0.7	1.9	2.7 m @ 0.7 g/t AuEq (0.5 g/t Au, 0.1% Sb) from 625.3 m
SDDSC120	639	649.3	10.3	0.7	0.4	1.5	15.6	10.3 m @ 1.5 g/t AuEq (0.7 g/t Au, 0.4% Sb) from 639.0 m
SDDSC120	652.25	654.55	2.3	0.7	0.1	0.8	1.8	2.3 m @ 0.8 g/t AuEq (0.7 g/t Au, 0.1% Sb) from 652.3 m
SDDSC120	667.3	669.62	2.32	0.7	0.1	0.9	2.2	2.3 m @ 0.9 g/t AuEq (0.7 g/t Au, 0.1% Sb) from 667.3 m
SDDSC120	740.14	740.3	0.16	2.0	1.4	4.6	0.7	0.2 m @ 4.6 g/t AuEq (2.0 g/t Au, 1.4% Sb) from 740.1 m
SDDSC120	937.02	937.52	0.5	3.7	0.0	3.7	1.9	0.5 m @ 3.7 g/t AuEq (3.7 g/t Au, 0.0% Sb) from 937.0 m
SDDSC121W1	628.5	633.11	4.61	0.5	0.4	1.1	5.3	4.6 m @ 1.1 g/t AuEq (0.5 g/t Au, 0.4% Sb) from 628.5 m
SDDSC121W1	850.3	852.68	2.38	0.8	0.2	1.3	3.0	2.4 m @ 1.3 g/t AuEq (0.8 g/t Au, 0.2% Sb) from 850.3 m
SDDSC121W1	613.21	613.41	0.2	14.9	11.5	36.5	7.3	0.2 m @ 36.5 g/t AuEq (14.9 g/t Au, 11.5% Sb) from 613.2 m
SDDSC121W1	622.6	623.02	0.42	291.3	10.6	311.3	130.8	0.4 m @ 311.3 g/t AuEq (291.3 g/t Au, 10.6% Sb) from 622.6 m
SDDSC121W1	666.92	667.35	0.43	1.9	2.7	6.9	3.0	0.4 m @ 6.9 g/t AuEq (1.9 g/t Au, 2.7% Sb) from 666.9 m
SDDSC121W1	557.21	557.31	0.1	1.6	0.0	1.7	0.2	0.1 m @ 1.7 g/t AuEq (1.6 g/t Au, 0.0% Sb) from 557.2 m
SDDSC121W1	600.17	601.21	1.04	1.3	1.4	4.0	4.1	1.0 m @ 4.0 g/t AuEq (1.3 g/t Au, 1.4% Sb) from 600.2 m
SDDSC121W1	605.54	605.85	0.31	0.3	1.9	3.8	1.2	0.3 m @ 3.8 g/t AuEq (0.3 g/t Au, 1.9% Sb) from 605.5 m
SDDSC121W1	618.58	619.59	1.01	3.1	4.6	11.7	11.9	1.0 m @ 11.7 g/t AuEq (3.1 g/t Au, 4.6% Sb) from 618.6 m
SDDSC121W1	628.1	628.2	0.1	0.1	2.3	4.5	0.4	0.1 m @ 4.5 g/t AuEq (0.1 g/t Au, 2.3% Sb) from 628.1 m
SDDSC121W1	637.54	640.45	2.91	0.4	0.3	0.9	2.6	2.9 m @ 0.9 g/t AuEq (0.4 g/t Au, 0.3% Sb) from 637.5 m
SDDSC121W1	643.74	646.3	2.56	0.3	0.4	1.0	2.4	2.6 m @ 1.0 g/t AuEq (0.3 g/t Au, 0.4% Sb) from 643.7 m
SDDSC121W1	655.24	655.42	0.18	0.9	0.1	1.0	0.2	0.2 m @ 1.0 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 655.2 m
SDDSC121W1	661.1	664.46	3.36	53.7	1.2	56.0	188.3	3.4 m @ 56.0 g/t AuEq (53.7 g/t Au, 1.2% Sb) from 661.1 m
SDDSC121W1	725.65	725.82	0.17	4.4	0.0	4.5	0.8	0.2 m @ 4.5 g/t AuEq (4.4 g/t Au, 0.0% Sb) from 725.7 m
SDDSC121W1	748.27	749.95	1.68	1.4	0.4	2.2	3.7	1.7 m @ 2.2 g/t AuEq (1.4 g/t Au, 0.4% Sb) from 748.3 m
SDDSC121W1	799.89	802.15	2.26	0.4	0.3	1.0	2.3	2.3 m @ 1.0 g/t AuEq (0.4 g/t Au, 0.3% Sb) from 799.9 m
SDDSC121W1	812.4	812.92	0.52	1.1	0.0	1.1	0.6	0.5 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 812.4 m
SDDSC121W1	821.31	823.16	1.85	0.9	0.1	1.0	1.8	1.9 m @ 1.0 g/t AuEq (0.9 g/t Au, 0.1% Sb) from 821.3 m
SDDSC121W1	826.09	828.85	2.76	1.0	0.1	1.2	3.3	2.8 m @ 1.2 g/t AuEq (1.0 g/t Au, 0.1% Sb) from 826.1 m
SDDSC121W1	872.44	872.78	0.34	1.1	0.0	1.1	0.4	0.3 m @ 1.1 g/t AuEq (1.1 g/t Au, 0.0% Sb) from 872.4 m
SDDSC121W1	887.93	888.26	0.33	1.1	0.4	1.8	0.6	0.3 m @ 1.8 g/t AuEq (1.1 g/t Au, 0.4% Sb) from 887.9 m
SDDSC121W1	892.65	893.98	1.33	6.0	0.0	6.0	8.0	1.3 m @ 6.0 g/t AuEq (6.0 g/t Au, 0.0% Sb) from 892.7 m
	913.38	914.15	0.77	3.4	0.0	3.4	2.6	0.8 m @ 3.4 g/t AuEq (3.4 g/t Au, 0.0% Sb) from 913.4 m